메뉴 건너뛰기




Volumn 34, Issue 6, 2017, Pages 1039-1060

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

Author keywords

[No Author keywords available]

Indexed keywords

FARMS; FRUITS; GRADING; GROUND VEHICLES; HOUGH TRANSFORMS; IMAGE PROCESSING; METADATA; NEURAL NETWORKS; ORCHARDS; PIXELS;

EID: 85013149597     PISSN: 15564959     EISSN: 15564967     Source Type: Journal    
DOI: 10.1002/rob.21699     Document Type: Article
Times cited : (392)

References (52)
  • 6
    • 84955197448 scopus 로고    scopus 로고
    • A pipeline for trunk detection in trellis structured apple orchards
    • Bargoti, S., Underwood, J. P., Nieto, J. I., & Sukkarieh, S. (2015). A pipeline for trunk detection in trellis structured apple orchards. Journal of Field Robotics, 32(8), 1075–1094.
    • (2015) Journal of Field Robotics , vol.32 , Issue.8 , pp. 1075-1094
    • Bargoti, S.1    Underwood, J.P.2    Nieto, J.I.3    Sukkarieh, S.4
  • 10
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • #x0026;, In, Lake Tahoe, USA, Harrahs and Harveys
    • Ciresan, D., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in neural information processing systems 25 (pp. 2843–2851). Lake Tahoe, USA: Harrahs and Harveys.
    • (2012) Advances in neural information processing systems 25 , pp. 2843-2851
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 13
    • 84927603060 scopus 로고    scopus 로고
    • Vineyard yield estimation based on the analysis of high resolution images obtained with artificial illumination at night
    • Font, D., Tresanchez, M., Martínez, D., Moreno, J., Clotet, E., & Palacín, J. (2015). Vineyard yield estimation based on the analysis of high resolution images obtained with artificial illumination at night. Sensors, 15(4), 8284–8301.
    • (2015) Sensors , vol.15 , Issue.4 , pp. 8284-8301
    • Font, D.1    Tresanchez, M.2    Martínez, D.3    Moreno, J.4    Clotet, E.5    Palacín, J.6
  • 15
    • 85027351115 scopus 로고    scopus 로고
    • Precision agriculture application in fruit crops: Experience in handpicked fruits
    • Gemtos, T., Fountas, S., Tagarakis, A., & Liakos, V. (2013). Precision agriculture application in fruit crops: Experience in handpicked fruits. Procedia Technology, 8, 324–332.
    • (2013) Procedia Technology , vol.8 , pp. 324-332
    • Gemtos, T.1    Fountas, S.2    Tagarakis, A.3    Liakos, V.4
  • 19
    • 84958534104 scopus 로고    scopus 로고
    • A feature learning based approach for automated fruit yield estimation
    • #x0026;, In, Brisbane, Australia, Springer
    • Hung, C., Underwood, J., Nieto, J., & Sukkarieh, S. (2015). A feature learning based approach for automated fruit yield estimation. In Field and Service Robotics (FSR) (pp. 485–498). Brisbane, Australia: Springer.
    • (2015) Field and Service Robotics (FSR) , pp. 485-498
    • Hung, C.1    Underwood, J.2    Nieto, J.3    Sukkarieh, S.4
  • 20
    • 84866412386 scopus 로고    scopus 로고
    • Automatic recognition vision system guided for apple harvesting robot
    • Ji, W., Zhao, D., Cheng, F., Xu, B., Zhang, Y., & Wang, J. (2012). Automatic recognition vision system guided for apple harvesting robot. Computers & Electrical Engineering, 38(5), 1186–1195.
    • (2012) Computers & Electrical Engineering , vol.38 , Issue.5 , pp. 1186-1195
    • Ji, W.1    Zhao, D.2    Cheng, F.3    Xu, B.4    Zhang, Y.5    Wang, J.6
  • 25
    • 84893646951 scopus 로고    scopus 로고
    • Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network
    • Kurtulmus, F., Lee, W., & Vardar, A. (2014). Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precision Agriculture, 15(1), 57–79.
    • (2014) Precision Agriculture , vol.15 , Issue.1 , pp. 57-79
    • Kurtulmus, F.1    Lee, W.2    Vardar, A.3
  • 26
    • 84862951168 scopus 로고    scopus 로고
    • Study on citrus fruit image data separability by segmentation methods
    • Li, P., Lee, S.-H., & Hsu, H.-Y. (2011). Study on citrus fruit image data separability by segmentation methods. Procedia Engineering, 23, 408–416.
    • (2011) Procedia Engineering , vol.23 , pp. 408-416
    • Li, P.1    Lee, S.-H.2    Hsu, H.-Y.3
  • 27
    • 83455229423 scopus 로고    scopus 로고
    • Determination of the number of green apples in RGB images recorded in orchards
    • Linker, R., Cohen, O., & Naor, A. (2012). Determination of the number of green apples in RGB images recorded in orchards. Computers and Electronics in Agriculture, 81, 45–57.
    • (2012) Computers and Electronics in Agriculture , vol.81 , pp. 45-57
    • Linker, R.1    Cohen, O.2    Naor, A.3
  • 34
    • 85130139568 scopus 로고    scopus 로고
    • Machine vision in estimation of fruit crop yield
    • #x0026;, In, Boca Raton, USA, CRC Press
    • Payne, A., & Walsh, K. (2014). Machine vision in estimation of fruit crop yield. In Plant image analysis: fundamentals and applications (pp. 329–374). Boca Raton, USA: CRC Press.
    • (2014) Plant image analysis: fundamentals and applications , pp. 329-374
    • Payne, A.1    Walsh, K.2
  • 35
    • 84890367209 scopus 로고    scopus 로고
    • Estimating mango crop yield using image analysis using fruit at “stone hardening” stage and night time imaging
    • Payne, A., Walsh, K., Subedi, P., & Jarvis, D. (2014). Estimating mango crop yield using image analysis using fruit at “stone hardening” stage and night time imaging. Computers and Electronics in Agriculture, 100, 160–167.
    • (2014) Computers and Electronics in Agriculture , vol.100 , pp. 160-167
    • Payne, A.1    Walsh, K.2    Subedi, P.3    Jarvis, D.4
  • 37
    • 84899631837 scopus 로고    scopus 로고
    • Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine
    • Qiang, L., Jianrong, C., Bin, L., Lie, D., & Yajing, Z. (2014). Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. International Journal of Agricultural and Biological Engineering, 7(2), 115–121.
    • (2014) International Journal of Agricultural and Biological Engineering , vol.7 , Issue.2 , pp. 115-121
    • Qiang, L.1    Jianrong, C.2    Bin, L.3    Lie, D.4    Yajing, Z.5
  • 41
    • 0000950331 scopus 로고    scopus 로고
    • The watershed transform: Definitions, algorithms and parallelization strategies
    • Roerdink, J. B. T. M., & Meijster, A. (2000). The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae, 41(1-2), 187–228.
    • (2000) Fundamenta Informaticae , vol.41 , Issue.1-2 , pp. 187-228
    • Roerdink, J.B.T.M.1    Meijster, A.2
  • 43
    • 70349121330 scopus 로고    scopus 로고
    • Citrus fruit identification and size determination using machine vision and ultrasonic sensors
    • &, In 2005 ASAE Annual Meeting (p.,) at St. Joseph, Michigan
    • Regunathan, M. & Lee, W. S. (2005). Citrus fruit identification and size determination using machine vision and ultrasonic sensors. In 2005 ASAE Annual Meeting (p. 1) at St. Joseph, Michigan. American Society of Agricultural and Biological Engineers.
    • (2005) American Society of Agricultural and Biological Engineers. , pp. 1
    • Regunathan, M.1    Lee, W.S.2
  • 44
    • 84890841492 scopus 로고    scopus 로고
    • Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions
    • Sengupta, S., & Lee, W. S. (2014). Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosystems Engineering, 11, 51–61.
    • (2014) Biosystems Engineering , vol.11 , pp. 51-61
    • Sengupta, S.1    Lee, W.S.2
  • 46
    • 84920105192 scopus 로고    scopus 로고
    • Identification of red apples in field environment with over the row machine vision system
    • Silwal, A., Gongal, A., & Karkee, M. (2014). Identification of red apples in field environment with over the row machine vision system. Agricultural Engineering International: CIGR Journal, 16(4), 66–75.
    • (2014) Agricultural Engineering International: CIGR Journal , vol.16 , Issue.4 , pp. 66-75
    • Silwal, A.1    Gongal, A.2    Karkee, M.3
  • 48
    • 70749099562 scopus 로고    scopus 로고
    • Modelling apple fruit yield using image analysis for fruit colour, shape and texture
    • Stajnko, D., Rakun, J., & Blanke, M. M. (2009). Modelling apple fruit yield using image analysis for fruit colour, shape and texture. European Journal of Horticultural Science, 74(6), 260–267.
    • (2009) European Journal of Horticultural Science , vol.74 , Issue.6 , pp. 260-267
    • Stajnko, D.1    Rakun, J.2    Blanke, M.M.3
  • 52
    • 84904179901 scopus 로고    scopus 로고
    • On plant detection of intact tomato fruits using image analysis and machine learning methods
    • Yamamoto, K., Guo, W., Yoshioka, Y., & Ninomiya, S. (2014). On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors, 14(7), 12191–12206.
    • (2014) Sensors , vol.14 , Issue.7 , pp. 12191-12206
    • Yamamoto, K.1    Guo, W.2    Yoshioka, Y.3    Ninomiya, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.