-
1
-
-
84893651437
-
Heart disease and stroke statistics-2014 update: A report from the American Heart Association
-
GoAS,Mozaffarian D, RogerVL, Benjamin EJ, Berry JD, et al. 2014. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation 129(3):28-292
-
(2014)
Circulation
, vol.129
, Issue.3
, pp. 28-292
-
-
Go, A.S.1
Mozaffarian, D.2
Roger, V.L.3
Benjamin, E.J.4
Berry, J.D.5
-
2
-
-
84928254049
-
The cell biology of disease: Recent insights into the cellular biology of atherosclerosis
-
Tabas I, Garcia-Cardeña G, Owens GK. 2015. The cell biology of disease: recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209(1):13-22
-
(2015)
J. Cell Biol.
, vol.209
, Issue.1
, pp. 13-22
-
-
Tabas, I.1
Garcia-Cardeña, G.2
Owens, G.K.3
-
3
-
-
84878564646
-
Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors
-
Rubanyi GM. 2013. Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors. Mol. Ther. 21(4):725-38
-
(2013)
Mol. Ther
, vol.21
, Issue.4
, pp. 725-738
-
-
Rubanyi, G.M.1
-
4
-
-
57949098602
-
Collateral circulation: Past and present
-
SchaperW. 2009. Collateral circulation: past and present. Basic Res. Cardiol. 104(1):5-21
-
(2009)
Basic Res. Cardiol
, vol.104
, Issue.1
, pp. 5-21
-
-
Schaper, W.1
-
5
-
-
80052933197
-
Basic and therapeutic aspects of angiogenesis
-
Potente M, Gerhardt H, Carmeliet P. 2011. Basic and therapeutic aspects of angiogenesis. Cell 146(6):873-87
-
(2011)
Cell
, vol.146
, Issue.6
, pp. 873-887
-
-
Potente, M.1
Gerhardt, H.2
Carmeliet, P.3
-
6
-
-
65549111271
-
Coronary vessel development and insight towards neovascular therapy
-
Smart N, Dubé KN, Riley PR. 2009. Coronary vessel development and insight towards neovascular therapy. Int. J. Exp. Pathol. 90(3):262-83
-
(2009)
Int. J. Exp. Pathol
, vol.90
, Issue.3
, pp. 262-283
-
-
Smart, N.1
Dubé, K.N.2
Riley, P.R.3
-
7
-
-
84927169682
-
Cellular origin and developmental program of coronary angiogenesis
-
Tian X, Pu WT, Zhou B. 2015. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116(3):515-30
-
(2015)
Circ. Res.
, vol.116
, Issue.3
, pp. 515-530
-
-
Tian, X.1
Pu, W.T.2
Zhou, B.3
-
8
-
-
77950871039
-
Epicardial-myocardial signaling directing coronary vasculogenesis
-
Olivey HE, Svensson EC. 2010. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ. Res. 106(5):818-32
-
(2010)
Circ. Res.
, vol.106
, Issue.5
, pp. 818-832
-
-
Olivey, H.E.1
Svensson, E.C.2
-
9
-
-
84907487533
-
Connecting the coronaries: How the coronary plexus develops and is functionalized
-
Dyer L, Pi X, Patterson C. 2014. Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev. Biol. 395(1):111-19
-
(2014)
Dev. Biol.
, vol.395
, Issue.1
, pp. 111-119
-
-
Dyer, L.1
Pi, X.2
Patterson, C.3
-
10
-
-
77950237662
-
Coronary arteries form by developmental reprogramming of venous cells
-
Red-Horse K, Ueno H, Weissman IL, Krasnow MA. 2010. Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549-53
-
(2010)
Nature
, vol.464
, pp. 549-553
-
-
Red-Horse, K.1
Ueno, H.2
Weissman, I.L.3
Krasnow, M.A.4
-
11
-
-
70349914321
-
Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling
-
Zeini M, Hang CT, Lehrer-Graiwer J, Dao T, Zhou B, Chang C-P. 2009. Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling. Development 136(19):3335-45
-
(2009)
Development
, vol.136
, Issue.19
, pp. 3335-3345
-
-
Zeini, M.1
Hang, C.T.2
Lehrer-Graiwer, J.3
Dao, T.4
Zhou, B.5
Chang, C.-P.6
-
12
-
-
0025286780
-
Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo
-
Waldo KL, Willner W, Kirby ML. 1990. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am. J. Anat. 188(2):109-20
-
(1990)
Am. J. Anat
, vol.188
, Issue.2
, pp. 109-120
-
-
Waldo, K.L.1
Willner, W.2
Kirby, M.L.3
-
13
-
-
1842293353
-
The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart
-
Vrancken PeetersMP, Gittenberger-deGroot AC,Mentink MM, Hungerford JE, Little CD, Poelmann RE. 1997. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev. Dyn. 208(3):338-48
-
(1997)
Dev. Dyn
, vol.208
, Issue.3
, pp. 338-348
-
-
Vrancken Peeters, M.P.1
Gittenberger-DeGroot, A.C.2
Mentink, M.M.3
Hungerford, J.E.4
Little, C.D.5
Poelmann, R.E.6
-
14
-
-
84958559113
-
Revisiting cardiac cellular composition
-
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, et al. 2016. Revisiting cardiac cellular composition. Circ. Res. 118(3):400-9
-
(2016)
Circ. Res.
, vol.118
, Issue.3
, pp. 400-409
-
-
Pinto, A.R.1
Ilinykh, A.2
Ivey, M.J.3
Kuwabara, J.T.4
D'Antoni, M.L.5
-
15
-
-
84895734499
-
VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart
-
Kivelä R, Bry M, Robciuc MR, Räsänen M, Taavitsainen M, et al. 2014. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol. Med. 6(3):307-21
-
(2014)
EMBO Mol. Med
, vol.6
, Issue.3
, pp. 307-321
-
-
Kivelä, R.1
Bry, M.2
Robciuc, M.R.3
Räsänen, M.4
Taavitsainen, M.5
-
16
-
-
84959911185
-
Endothelial fluid shear stress sensing in vascular health and disease
-
Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. 2016. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Investig. 126(3):821-28
-
(2016)
J. Clin. Investig
, vol.126
, Issue.3
, pp. 821-828
-
-
Baeyens, N.1
Bandyopadhyay, C.2
Coon, B.G.3
Yun, S.4
Schwartz, M.A.5
-
17
-
-
79961230399
-
Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
-
Armulik A, Genove G, Betsholtz C. 2011. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21(2):193-215
-
(2011)
Dev. Cell
, vol.21
, Issue.2
, pp. 193-215
-
-
Armulik, A.1
Genove, G.2
Betsholtz, C.3
-
18
-
-
48249129697
-
A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells
-
Passman JN, Dong X-R, Wu S-P, Maguire CT, Hogan KA, et al. 2008. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. PNAS 105(27):9349-54
-
(2008)
PNAS
, vol.105
, Issue.27
, pp. 9349-9354
-
-
Passman, J.N.1
Dong, X.-R.2
Wu, S.-P.3
Maguire, C.T.4
Hogan, K.A.5
-
19
-
-
84873661449
-
The adventitia: Essential regulator of vascular wall structure and function
-
Stenmark KR, Yeager ME, Kasmi El KC, Nozik-Grayck E, Gerasimovskaya EV, et al. 2013. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75(1):23-47
-
(2013)
Annu. Rev. Physiol
, vol.75
, Issue.1
, pp. 23-47
-
-
Stenmark, K.R.1
Yeager, M.E.2
Kasmi El, K.C.3
Nozik-Grayck, E.4
Gerasimovskaya, E.V.5
-
20
-
-
84875066543
-
Coronary veins determine the pattern of sympathetic innervation in the developing heart
-
Nam J, Onitsuka I, Hatch J, Uchida Y, Ray S, et al. 2013. Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140(7):1475-85
-
(2013)
Development
, vol.140
, Issue.7
, pp. 1475-1485
-
-
Nam, J.1
Onitsuka, I.2
Hatch, J.3
Uchida, Y.4
Ray, S.5
-
21
-
-
84901775982
-
Venous endothelin guides sympathetic innervation of the developing mouse heart
-
Manousiouthakis E, Mendez M, Garner MC, Exertier P, Makita T. 2014. Venous endothelin guides sympathetic innervation of the developing mouse heart. Nat. Commun. 5:3918
-
(2014)
Nat. Commun
, vol.5
, pp. 3918
-
-
Manousiouthakis, E.1
Mendez, M.2
Garner, M.C.3
Exertier, P.4
Makita, T.5
-
22
-
-
84930639373
-
Cardiac lymphatics are heterogeneous in origin and respond to injury
-
Klotz L, Norman S, Vieira JM, MastersM, RohlingM, et al. 2015. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522:62-67
-
(2015)
Nature
, vol.522
, pp. 62-67
-
-
Klotz, L.1
Norman, S.2
Vieira, J.M.3
Masters, M.4
Rohling, M.5
-
23
-
-
84954401965
-
Developmental progression of the coronary vasculature in human embryos and fetuses
-
Tomanek RJ. 2016. Developmental progression of the coronary vasculature in human embryos and fetuses. Anat. Rec. 299(1):25-41
-
(2016)
Anat. Rec
, vol.299
, Issue.1
, pp. 25-41
-
-
Tomanek, R.J.1
-
24
-
-
85027471230
-
The development of the blood supply to the heart in the embryo pig
-
Bennett HS. 1936. The development of the blood supply to the heart in the embryo pig. Am. J. Anat. 60(1):27-53
-
(1936)
Am. J. Anat
, vol.60
, Issue.1
, pp. 27-53
-
-
Bennett, H.S.1
-
25
-
-
0010107458
-
The development of the cardiac-coronary circulatory system
-
Goldsmith JB, Butler HW. 1937. The development of the cardiac-coronary circulatory system. Am. J. Anat. 60(2):185-201
-
(1937)
Am. J. Anat
, vol.60
, Issue.2
, pp. 185-201
-
-
Goldsmith, J.B.1
Butler, H.W.2
-
26
-
-
18244416832
-
Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium
-
Männer J. 1999. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255(2):212-26
-
(1999)
Anat. Rec
, vol.255
, Issue.2
, pp. 212-226
-
-
Männer, J.1
-
27
-
-
0027227849
-
Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras
-
Poelmann RE,Gittenberger-deGroot AC,Mentink MM, Bökenkamp R, Hogers B. 1993. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 73(3):559-68
-
(1993)
Circ. Res.
, vol.73
, Issue.3
, pp. 559-568
-
-
Poelmann, R.E.1
Gittenberger-DeGroot, A.C.2
Mentink, M.M.3
Bökenkamp, R.4
Hogers, B.5
-
28
-
-
0029964385
-
Pericardial mesoderm generates a population of coronary smoothmuscle cells migrating into the heart along with ingrowth of the epicardial organ
-
Mikawa T, Gourdie RG. 1996. Pericardial mesoderm generates a population of coronary smoothmuscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174(2):221-32
-
(1996)
Dev. Biol.
, vol.174
, Issue.2
, pp. 221-232
-
-
Mikawa, T.1
Gourdie, R.G.2
-
29
-
-
12244298152
-
Origin of coronary endothelial cells from epicardial mesothelium in avian embryos
-
Pérez-Pomares J-M, Carmona R, González-Iriarte M, Atencia G, Wessels A, Muñoz-Chápuli R. 2002. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 46(8):1005-13
-
(2002)
Int. J. Dev. Biol.
, vol.46
, Issue.8
, pp. 1005-1013
-
-
Pérez-Pomares, J.-M.1
Carmona, R.2
González-Iriarte, M.3
Atencia, G.4
Wessels, A.5
Muñoz-Chápuli, R.6
-
30
-
-
0026767366
-
Retroviral analysis of cardiac morphogenesis: Discontinuous formation of coronary vessels
-
Mikawa T, Fischman DA. 1992. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. PNAS 89(20):9504-8
-
(1992)
PNAS
, vol.89
, Issue.20
, pp. 9504-9508
-
-
Mikawa, T.1
Fischman, D.A.2
-
31
-
-
84856090845
-
Lineage tracing
-
Kretzschmar K,Watt FM. 2012. Lineage tracing. Cell 148(1-2):33-45
-
(2012)
Cell
, vol.148
, Issue.1-2
, pp. 33-45
-
-
Kretzschmar, K.1
Watt, F.M.2
-
32
-
-
29444451293
-
Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation
-
Merki E, Zamora M, Raya A, Kawakami Y, Wang J, et al. 2005. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. PNAS 102(51):18455-60
-
(2005)
PNAS
, vol.102
, Issue.51
, pp. 18455-18460
-
-
Merki, E.1
Zamora, M.2
Raya, A.3
Kawakami, Y.4
Wang, J.5
-
33
-
-
46449089721
-
A myocardial lineage derives from Tbx18 epicardial cells
-
Cai C-L, Martin JC, Sun Y, Cui L, Wang L, et al. 2008. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104-8
-
(2008)
Nature
, vol.454
, pp. 104-108
-
-
Cai, C.-L.1
Martin, J.C.2
Sun, Y.3
Cui, L.4
Wang, L.5
-
34
-
-
46449138664
-
Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
-
Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, et al. 2008. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109-13
-
(2008)
Nature
, vol.454
, pp. 109-113
-
-
Zhou, B.1
Ma, Q.2
Rajagopal, S.3
Wu, S.M.4
Domian, I.5
-
35
-
-
84911489742
-
The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis
-
Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivelä R, et al. 2014. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141(23):4500-12
-
(2014)
Development
, vol.141
, Issue.23
, pp. 4500-4512
-
-
Chen, H.I.1
Sharma, B.2
Akerberg, B.N.3
Numi, H.J.4
Kivelä, R.5
-
36
-
-
84883318758
-
Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries
-
Tian X,HuT, ZhangH,HeL,Huang X, et al. 2013. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23(9):1075-90
-
(2013)
Cell Res.
, vol.23
, Issue.9
, pp. 1075-1090
-
-
Tian, X.1
Hu, T.2
Zhang, H.3
He, L.4
Huang, X.5
-
37
-
-
84875893300
-
Haemogenic endocardium contributes to transient definitive haematopoiesis
-
Nakano H, Liu X, Arshi A, Nakashima Y, van Handel B, et al. 2013. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4:1564
-
(2013)
Nat. Commun
, vol.4
, pp. 1564
-
-
Nakano, H.1
Liu, X.2
Arshi, A.3
Nakashima, Y.4
Van Handel, B.5
-
38
-
-
33646155950
-
VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo
-
Tomanek RJ, Ishii Y, Holifield JS, Sjogren CL, Hansen HK, Mikawa T. 2006. VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circ. Res. 98(7):947-53
-
(2006)
Circ. Res.
, vol.98
, Issue.7
, pp. 947-953
-
-
Tomanek, R.J.1
Ishii, Y.2
Holifield, J.S.3
Sjogren, C.L.4
Hansen, H.K.5
Mikawa, T.6
-
39
-
-
84880780215
-
Accelerated coronary angiogenesis by Vegfr1-knockout endocardial cells
-
Zhang Z, Zhou B. 2013. Accelerated coronary angiogenesis by Vegfr1-knockout endocardial cells. PLOS ONE 8(7):e70570
-
(2013)
PLOS ONE
, vol.8
, Issue.7
, pp. e70570
-
-
Zhang, Z.1
Zhou, B.2
-
40
-
-
35448946457
-
Coronary vessel development is dependent on the type III transforming growth factor βreceptor
-
Compton LA, Potash DA, Brown CB, Barnett JV. 2007. Coronary vessel development is dependent on the type III transforming growth factor βreceptor. Circ. Res. 101(8):784-91
-
(2007)
Circ. Res.
, vol.101
, Issue.8
, pp. 784-791
-
-
Compton, L.A.1
Potash, D.A.2
Brown, C.B.3
Barnett, J.V.4
-
41
-
-
84949845526
-
Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos
-
Yzaguirre AD, Padmanabhan A, Groh ED, Engleka KA, Li J, et al. 2015. Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. eLife 4:e07780
-
(2015)
ELife
, vol.4
, pp. e07780
-
-
Yzaguirre, A.D.1
Padmanabhan, A.2
Groh, E.D.3
Engleka, K.A.4
Li, J.5
-
42
-
-
84870043996
-
Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling
-
Wu B, Zhang Z, Lui W, Chen X, Wang Y, et al. 2012. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151(5):1083-96
-
(2012)
Cell
, vol.151
, Issue.5
, pp. 1083-1096
-
-
Wu, B.1
Zhang, Z.2
Lui, W.3
Chen, X.4
Wang, Y.5
-
43
-
-
84863229669
-
Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
-
KatzTC, SinghMK, DegenhardtK, Rivera-Feliciano J, Johnson RL, et al. 2012. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22(3):639-50
-
(2012)
Dev. Cell
, vol.22
, Issue.3
, pp. 639-650
-
-
Katz, T.C.1
Singh, M.K.2
Degenhardt, K.3
Rivera-Feliciano, J.4
Johnson, R.L.5
-
44
-
-
84964997228
-
Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development
-
Singh A, Ramesh S, Cibi DM, Yun LS, Li J, et al. 2016. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 15(7):1384-93
-
(2016)
Cell Rep.
, vol.15
, Issue.7
, pp. 1384-1393
-
-
Singh, A.1
Ramesh, S.2
Cibi, D.M.3
Yun, L.S.4
Li, J.5
-
45
-
-
84963705843
-
Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls
-
Zhang H, Pu W, Li G, Huang X, He L, et al. 2016. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118:1880-93
-
(2016)
Circ. Res.
, vol.118
, pp. 1880-1893
-
-
Zhang, H.1
Pu, W.2
Li, G.3
Huang, X.4
He, L.5
-
46
-
-
84903703870
-
Vessel formation de novo formation of a distinct coronary vascular population in neonatal heart
-
Tian X, Hu T, Zhang H, He L, Huang X, et al. 2014. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345:90-94
-
(2014)
Science
, vol.345
, pp. 90-94
-
-
Tian, X.1
Hu, T.2
Zhang, H.3
He, L.4
Huang, X.5
-
47
-
-
84905269218
-
Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart
-
Arita Y, Nakaoka Y, Matsunaga T, Kidoya H, Yamamizu K, et al. 2014. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat. Commun. 5:4552
-
(2014)
Nat. Commun
, vol.5
, pp. 4552
-
-
Arita, Y.1
Nakaoka, Y.2
Matsunaga, T.3
Kidoya, H.4
Yamamizu, K.5
-
48
-
-
0033005665
-
YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis
-
Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. 1999. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126(9):1845-57
-
(1999)
Development
, vol.126
, Issue.9
, pp. 1845-1857
-
-
Moore, A.W.1
McInnes, L.2
Kreidberg, J.3
Hastie, N.D.4
Schedl, A.5
-
49
-
-
0028952534
-
Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice
-
Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, et al. 1995. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121(2):489-503
-
(1995)
Development
, vol.121
, Issue.2
, pp. 489-503
-
-
Kwee, L.1
Baldwin, H.S.2
Shen, H.M.3
Stewart, C.L.4
Buck, C.5
-
50
-
-
84885857490
-
Tbx18 regulates development of the epicardium and coronary vessels
-
Wu S-P, Dong X-R, Regan JN, Su C, Majesky MW. 2013. Tbx18 regulates development of the epicardium and coronary vessels. Dev. Biol. 383(2):307-20
-
(2013)
Dev. Biol.
, vol.383
, Issue.2
, pp. 307-320
-
-
Wu, S.-P.1
Dong, X.-R.2
Regan, J.N.3
Su, C.4
Majesky, M.W.5
-
51
-
-
33745129425
-
Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development
-
Lavine KJ,White AC, Park C, Smith CS, Choi K, et al. 2006. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 20(12):1651-66
-
(2006)
Genes Dev
, vol.20
, Issue.12
, pp. 1651-1666
-
-
Lavine, K.J.1
White, A.C.2
Park, C.3
Smith, C.S.4
Choi, K.5
-
52
-
-
67651005839
-
Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart
-
Ma Q, Kong SW, Hu Y, Campbell PH, McGowan FX, et al. 2009. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J. Clin. Investig. 119(6):1462-76
-
(2009)
J. Clin. Investig
, vol.119
, Issue.6
, pp. 1462-1476
-
-
Ma, Q.1
Kong, S.W.2
Hu, Y.3
Campbell, P.H.4
McGowan, F.X.5
-
53
-
-
84866053210
-
Radial construction of an arterial wall
-
Greif DM, Kumar M, Lighthouse JK, Hum J, An A, et al. 2012. Radial construction of an arterial wall. Dev. Cell 23(3):482-93
-
(2012)
Dev. Cell
, vol.23
, Issue.3
, pp. 482-493
-
-
Greif, D.M.1
Kumar, M.2
Lighthouse, J.K.3
Hum, J.4
An, A.5
-
54
-
-
84871754528
-
Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling
-
Arima Y,Miyagawa-Tomita S, Maeda K, Asai R, Seya D, et al. 2012. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat. Commun. 3:1267
-
(2012)
Nat. Commun
, vol.3
, pp. 1267
-
-
Arima, Y.1
Miyagawa-Tomita, S.2
Maeda, K.3
Asai, R.4
Seya, D.5
-
55
-
-
84861394103
-
The bHLHtranscription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors
-
Acharya A, Baek ST, HuangG, Eskiocak B, Goetsch S, et al. 2012. The bHLHtranscription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139(12):2139-49
-
(2012)
Development
, vol.139
, Issue.12
, pp. 2139-2149
-
-
Acharya, A.1
Baek, S.T.2
Huang, G.3
Eskiocak, B.4
Goetsch, S.5
-
56
-
-
0034010326
-
Fate of themammalian cardiac neural crest
-
Jiang X, Rowitch DH, Soriano P,McMahon AP, Sucov HM. 2000. Fate of themammalian cardiac neural crest. Development 127(8):1607-16
-
(2000)
Development
, vol.127
, Issue.8
, pp. 1607-1616
-
-
Jiang, X.1
Rowitch, D.H.2
Soriano, P.3
McMahon, A.P.4
Sucov, H.M.5
-
57
-
-
0028237124
-
Association of the cardiac neural crest with development of the coronary arteries in the chick embryo
-
Waldo KL, Kumiski DH, Kirby ML. 1994. Association of the cardiac neural crest with development of the coronary arteries in the chick embryo. Anat. Rec. 239(3):315-31
-
(1994)
Anat. Rec
, vol.239
, Issue.3
, pp. 315-331
-
-
Waldo, K.L.1
Kumiski, D.H.2
Kirby, M.L.3
-
58
-
-
0026701709
-
Coronary artery development in the chick: Origin and deployment of smooth muscle cells, and the effects of neural crest ablation
-
Hood LC, Rosenquist TH. 1992. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat. Rec. 234(2):291-300
-
(1992)
Anat. Rec
, vol.234
, Issue.2
, pp. 291-300
-
-
Hood, L.C.1
Rosenquist, T.H.2
-
59
-
-
84982313678
-
Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells
-
Chen Q, Zhang H, Liu Y, Adams S, Eilken H, et al. 2016. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7:12422
-
(2016)
Nat. Commun
, vol.7
, pp. 12422
-
-
Chen, Q.1
Zhang, H.2
Liu, Y.3
Adams, S.4
Eilken, H.5
-
60
-
-
84938877573
-
Developmental origin of age-related coronary artery disease
-
Wei K, Díaz-Trelles R, Liu Q, Diez-Cuñado M, Scimia M-C, et al. 2015. Developmental origin of age-related coronary artery disease. Cardiovasc. Res. 107(2):287-94
-
(2015)
Cardiovasc. Res.
, vol.107
, Issue.2
, pp. 287-294
-
-
Wei, K.1
Díaz-Trelles, R.2
Liu, Q.3
Diez-Cuñado, M.4
Scimia, M.-C.5
-
61
-
-
58149392309
-
Platelet-derived growth factor receptor β signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations
-
Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B, et al. 2008. Platelet-derived growth factor receptor β signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ. Res. 103(12):1393-401
-
(2008)
Circ. Res.
, vol.103
, Issue.12
, pp. 1393-1401
-
-
Mellgren, A.M.1
Smith, C.L.2
Olsen, G.S.3
Eskiocak, B.4
Zhou, B.5
-
62
-
-
79958799319
-
Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling
-
Smith CL, Blaek ST, Sung CY, Tallquist MD. 2011. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108:e15-26
-
(2011)
Circ. Res.
, vol.108
, pp. e15-e26
-
-
Smith, C.L.1
Blaek, S.T.2
Sung, C.Y.3
Tallquist, M.D.4
-
63
-
-
84864067904
-
Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart
-
Braitsch CM, Combs MD, Quaggin SE, Yutzey KE. 2012. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev. Biol. 368(2):345-57
-
(2012)
Dev. Biol.
, vol.368
, Issue.2
, pp. 345-357
-
-
Braitsch, C.M.1
Combs, M.D.2
Quaggin, S.E.3
Yutzey, K.E.4
-
64
-
-
84960364577
-
Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo
-
Liu Q, Zhang H, Tian X, He L, Huang X, et al. 2016. Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochem. Biophys. Res. Commun. 471(4):430-36
-
(2016)
Biochem. Biophys. Res. Commun
, vol.471
, Issue.4
, pp. 430-436
-
-
Liu, Q.1
Zhang, H.2
Tian, X.3
He, L.4
Huang, X.5
-
65
-
-
84954512505
-
Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration
-
Cao J, Navis A, Cox BD, Dickson AL, Gemberling M, et al. 2016. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143(2):232-43
-
(2016)
Development
, vol.143
, Issue.2
, pp. 232-243
-
-
Cao, J.1
Navis, A.2
Cox, B.D.3
Dickson, A.L.4
Gemberling, M.5
-
66
-
-
84922606875
-
The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming
-
Unternaehrer JJ, Zhao R, Kim K, Cesana M, Powers JT, et al. 2014. The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Rep. 3(5):691-98
-
(2014)
Stem Cell Rep.
, vol.3
, Issue.5
, pp. 691-698
-
-
Unternaehrer, J.J.1
Zhao, R.2
Kim, K.3
Cesana, M.4
Powers, J.T.5
-
67
-
-
84857817163
-
Slug and Sox9 cooperatively determine the mammary stem cell state
-
Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, et al. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148(5):1015-28
-
(2012)
Cell
, vol.148
, Issue.5
, pp. 1015-1028
-
-
Guo, W.1
Keckesova, Z.2
Donaher, J.L.3
Shibue, T.4
Tischler, V.5
-
68
-
-
84955286490
-
Pericytes are progenitors for coronary artery smooth muscle
-
Volz KS, Jacobs AH, Chen HI, Poduri A,McKay AS, et al. 2015. Pericytes are progenitors for coronary artery smooth muscle. eLife 4:e10036
-
(2015)
ELife
, vol.4
, pp. e10036
-
-
Volz, K.S.1
Jacobs, A.H.2
Chen, H.I.3
Poduri, A.4
McKay, A.S.5
-
69
-
-
84918515802
-
Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels
-
Trembley MA, Velasquez LS, Mesy Bentley KL, Small EM. 2015. Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development 142(1):21-30
-
(2015)
Development
, vol.142
, Issue.1
, pp. 21-30
-
-
Trembley, M.A.1
Velasquez, L.S.2
Mesy Bentley, K.L.3
Small, E.M.4
-
70
-
-
79954793035
-
Notch signaling regulates smooth muscle differentiation of epicardium-derived cells
-
Grieskamp T, Rudat C, Lüdtke T-W, Norden J, Kispert A. 2011. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ. Res. 108(7):813-23
-
(2011)
Circ. Res.
, vol.108
, Issue.7
, pp. 813-823
-
-
Grieskamp, T.1
Rudat, C.2
Lüdtke, T.-W.3
Norden, J.4
Kispert, A.5
-
71
-
-
77958016857
-
Notch3 is critical for proper angiogenesis and mural cell investment
-
Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. 2010. Notch3 is critical for proper angiogenesis and mural cell investment. Circ. Res. 107(7):860-70
-
(2010)
Circ. Res.
, vol.107
, Issue.7
, pp. 860-870
-
-
Liu, H.1
Zhang, W.2
Kennard, S.3
Caldwell, R.B.4
Lilly, B.5
-
72
-
-
84868514989
-
Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome
-
Hofmann JJ, Briot A, Enciso J, Zovein AC, Ren S, et al. 2012. Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development 139(23):4449-60
-
(2012)
Development
, vol.139
, Issue.23
, pp. 4449-4460
-
-
Hofmann, J.J.1
Briot, A.2
Enciso, J.3
Zovein, A.C.4
Ren, S.5
-
73
-
-
84961778419
-
Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium
-
Kerr BA, West XZ, Kim Y-W, Zhao Y, Tischenko M, et al. 2016. Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium. Nat. Commun. 7:10960
-
(2016)
Nat. Commun
, vol.7
, pp. 10960
-
-
Kerr, B.A.1
West, X.Z.2
Kim, Y.-W.3
Zhao, Y.4
Tischenko, M.5
-
74
-
-
84908627886
-
VEGF-C and aortic cardiomyocytes guide coronary artery stem development
-
Chen HI, Poduri A, Numi H, Kivelä R, Saharinen P, et al. 2014. VEGF-C and aortic cardiomyocytes guide coronary artery stem development. J. Clin. Investig. 124(11):4899-914
-
(2014)
J. Clin. Investig
, vol.124
, Issue.11
, pp. 4899-4914
-
-
Chen, H.I.1
Poduri, A.2
Numi, H.3
Kivelä, R.4
Saharinen, P.5
-
75
-
-
84929914270
-
The CXCL12/CXCR4 axis plays a critical role in coronary artery development
-
Ivins S, Chappell J, Vernay B, Suntharalingham J, Martineau A, et al. 2015. The CXCL12/CXCR4 axis plays a critical role in coronary artery development. Dev. Cell 33(4):455-68
-
(2015)
Dev. Cell
, vol.33
, Issue.4
, pp. 455-468
-
-
Ivins, S.1
Chappell, J.2
Vernay, B.3
Suntharalingham, J.4
Martineau, A.5
-
76
-
-
33947728336
-
Coronary artery anomalies: An entity in search of an identity
-
Angelini P. 2007. Coronary artery anomalies: an entity in search of an identity. Circulation 115(10):1296-305
-
(2007)
Circulation
, vol.115
, Issue.10
, pp. 1296-1305
-
-
Angelini, P.1
-
77
-
-
62449259367
-
Congenital coronary artery anomalies in adults: Non-invasive assessment with multidetector CT
-
Zeina AR, Blinder J, Sharif D, Rosenschein U, Barmeir E. 2014. Congenital coronary artery anomalies in adults: non-invasive assessment with multidetector CT. Br. J. Radiol. 82(975):254-61
-
(2014)
Br. J. Radiol
, vol.82
, Issue.975
, pp. 254-261
-
-
Zeina, A.R.1
Blinder, J.2
Sharif, D.3
Rosenschein, U.4
Barmeir, E.5
-
78
-
-
0014319023
-
Anomalous origin of the left coronary artery from the pulmonary trunk Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases
-
Wesselhoeft H, Fawcett JS, Johnson AL. 1968. Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation 38(2):403-25
-
(1968)
Circulation
, vol.38
, Issue.2
, pp. 403-425
-
-
Wesselhoeft, H.1
Fawcett, J.S.2
Johnson, A.L.3
-
79
-
-
23944507512
-
Congenital anomalies of the coronary arteries
-
Hauser M. 2005. Congenital anomalies of the coronary arteries. Heart 91(9):1240-45
-
(2005)
Heart
, vol.91
, Issue.9
, pp. 1240-1245
-
-
Hauser, M.1
-
80
-
-
80052963564
-
Outcomes of coronary reimplantation for correction of anomalous origin of left coronary artery from pulmonary artery
-
Ramírez S, Curi-Curi PJ, Calderón-Colmenero J, García J, Britton C, et al. 2011. Outcomes of coronary reimplantation for correction of anomalous origin of left coronary artery from pulmonary artery. Rev. Esp. Cardiol. 64(8):681-87
-
(2011)
Rev. Esp. Cardiol
, vol.64
, Issue.8
, pp. 681-687
-
-
Ramírez, S.1
Curi-Curi, P.J.2
Calderón-Colmenero, J.3
García, J.4
Britton, C.5
-
81
-
-
0024396688
-
Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth?
-
Bogers AJ, Gittenberger-Groot AC, Poelmann RE, Péault BM, Huysmans HA. 1989. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat. Embryol. 180(5):437-41
-
(1989)
Anat. Embryol
, vol.180
, Issue.5
, pp. 437-441
-
-
Bogers, A.J.1
Gittenberger-Groot, A.C.2
Poelmann, R.E.3
Péault, B.M.4
Huysmans, H.A.5
-
82
-
-
84894311896
-
Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart
-
Tian X, Hu T, He L, Zhang H, Huang X, et al. 2013. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLOS ONE 8(11):e80857
-
(2013)
PLOS ONE
, vol.8
, Issue.11
, pp. e80857
-
-
Tian, X.1
Hu, T.2
He, L.3
Zhang, H.4
Huang, X.5
-
83
-
-
0043133835
-
BMPER, a novel endothelial cell precursorderived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation
-
MoserM, BinderO,Wu Y, Aitsebaomo J, Ren R, et al. 2003. BMPER, a novel endothelial cell precursorderived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol. Cell. Biol. 23(16):5664-79
-
(2003)
Mol. Cell. Biol.
, vol.23
, Issue.16
, pp. 5664-5679
-
-
Moser, M.1
Binder, O.2
Wu, Y.3
Aitsebaomo, J.4
Ren, R.5
-
84
-
-
54449100051
-
BMPERis an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis
-
Heinke J, Wehofsits L, ZhouQ, ZoellerC, Baar K-M, et al. 2008.BMPERis an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ. Res. 103(8):804-12
-
(2008)
Circ. Res.
, vol.103
, Issue.8
, pp. 804-812
-
-
Heinke, J.1
Wehofsits, L.2
Zhou, Q.3
Zoeller, C.4
Baar, K.-M.5
-
85
-
-
84892843786
-
BMPER-induced BMP signaling promotes coronary artery remodeling
-
Dyer L,WuY, MoserM, Patterson C. 2014. BMPER-induced BMP signaling promotes coronary artery remodeling. Dev. Biol. 386(2):385-94
-
(2014)
Dev. Biol.
, vol.386
, Issue.2
, pp. 385-394
-
-
Dyer, L.1
Wu, Y.2
Moser, M.3
Patterson, C.4
-
86
-
-
84929865692
-
CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation
-
Cavallero S, Shen H, Yi C, Lien C-L, Kumar SR, Sucov HM. 2015. CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev. Cell 33(4):469-77
-
(2015)
Dev. Cell
, vol.33
, Issue.4
, pp. 469-477
-
-
Cavallero, S.1
Shen, H.2
Yi, C.3
Lien, C.-L.4
Kumar, S.R.5
Sucov, H.M.6
-
87
-
-
35548932510
-
Vascular remodeling of the mouse yolk sac requires hemodynamic force
-
Lucitti JL, Jones EAV, Huang C, Chen J, Fraser SE, Dickinson ME. 2007. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18):3317-26
-
(2007)
Development
, vol.134
, Issue.18
, pp. 3317-3326
-
-
Lucitti, J.L.1
Jones, E.A.V.2
Huang, C.3
Chen, J.4
Fraser, S.E.5
Dickinson, M.E.6
-
88
-
-
0842322958
-
Flow regulates arterial-venous differentiation in the chick embryo yolk sac
-
Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, et al. 2004. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131(2):361-75
-
(2004)
Development
, vol.131
, Issue.2
, pp. 361-375
-
-
Le Noble, F.1
Moyon, D.2
Pardanaud, L.3
Yuan, L.4
Djonov, V.5
-
89
-
-
84923281901
-
Arteries are formed by vein-derived endothelial tip cells
-
Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME, et al. 2014. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5:5758
-
(2014)
Nat. Commun
, vol.5
, pp. 5758
-
-
Xu, C.1
Hasan, S.S.2
Schmidt, I.3
Rocha, S.F.4
Pitulescu, M.E.5
-
90
-
-
84879666845
-
Notch controls retinal blood vessel maturation and quiescence
-
Ehling M, Adams S, Benedito R, Adams RH. 2013. Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051-61
-
(2013)
Development
, vol.140
, Issue.14
, pp. 3051-3061
-
-
Ehling, M.1
Adams, S.2
Benedito, R.3
Adams, R.H.4
-
91
-
-
84924561757
-
Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency
-
Theodoris CV, Li M, White MP, Liu L, He D, et al. 2015. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160(6):1072-86
-
(2015)
Cell
, vol.160
, Issue.6
, pp. 1072-1086
-
-
Theodoris, C.V.1
Li, M.2
White, M.P.3
Liu, L.4
He, D.5
-
92
-
-
84884236484
-
Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac
-
Udan RS, Vadakkan TJ, Dickinson ME. 2013. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140(19):4041-50
-
(2013)
Development
, vol.140
, Issue.19
, pp. 4041-4050
-
-
Udan, R.S.1
Vadakkan, T.J.2
Dickinson, M.E.3
-
93
-
-
77958541375
-
Dynamic analysis of vascular morphogenesis using transgenic quail embryos
-
Sato Y, PoynterG,HussD, Filla MB, Czirok A, et al. 2010. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLOS ONE 5(9):e12674
-
(2010)
PLOS ONE
, vol.5
, Issue.9
, pp. e12674
-
-
Sato, Y.1
Poynter, G.2
Huss, D.3
Filla, M.B.4
Czirok, A.5
-
94
-
-
84942900570
-
Molecular controls of arterial morphogenesis
-
Simons M, Eichmann A. 2015. Molecular controls of arterial morphogenesis. Circ. Res. 116(10):1712-24
-
(2015)
Circ. Res.
, vol.116
, Issue.10
, pp. 1712-1724
-
-
Simons, M.1
Eichmann, A.2
-
95
-
-
33744483170
-
Selective regulation of arterial branching morphogenesis by synectin
-
Chittenden TW, Claes F, Lanahan AA, AutieroM, Palac RT, et al. 2006. Selective regulation of arterial branching morphogenesis by synectin. Dev. Cell 10(6):783-95
-
(2006)
Dev. Cell
, vol.10
, Issue.6
, pp. 783-795
-
-
Chittenden, T.W.1
Claes, F.2
Lanahan, A.A.3
Autiero, M.4
Palac, R.T.5
-
96
-
-
61649105524
-
Synectin-dependent regulation of arterial maturation
-
Paye JM, Phng L-K, Lanahan AA, Gerhard H, Simons M. 2009. Synectin-dependent regulation of arterial maturation. Dev. Dyn. 238(3):604-10
-
(2009)
Dev. Dyn
, vol.238
, Issue.3
, pp. 604-610
-
-
Paye, J.M.1
Phng, L.-K.2
Lanahan, A.A.3
Gerhard, H.4
Simons, M.5
-
97
-
-
84886088990
-
Endothelial cell-dependent regulation of arteriogenesis
-
Moraes F, Paye J, Mac Gabhann F, Zhuang ZW, Zhang J, et al. 2013. Endothelial cell-dependent regulation of arteriogenesis. Circ. Res. 113(9):1076-86
-
(2013)
Circ. Res.
, vol.113
, Issue.9
, pp. 1076-1086
-
-
Moraes, F.1
Paye, J.2
Mac Gabhann, F.3
Zhuang, Z.W.4
Zhang, J.5
-
98
-
-
84876976777
-
The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis
-
Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, et al. 2013. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev. Cell 25(2):156-68
-
(2013)
Dev. Cell
, vol.25
, Issue.2
, pp. 156-168
-
-
Lanahan, A.1
Zhang, X.2
Fantin, A.3
Zhuang, Z.4
Rivera-Molina, F.5
-
99
-
-
84898888747
-
Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction
-
Liu Y, Lu X, Xiang F-L, Poelmann RE, Gittenberger-Groot AC, et al. 2014. Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction. Eur. Heart J. 35(14):920-31
-
(2014)
Eur. Heart J
, vol.35
, Issue.14
, pp. 920-931
-
-
Liu, Y.1
Lu, X.2
Xiang, F.-L.3
Poelmann, R.E.4
Gittenberger-Groot, A.C.5
-
100
-
-
18844473540
-
Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia
-
Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, et al. 2000. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86(2):E29-35
-
(2000)
Circ. Res.
, vol.86
, Issue.2
, pp. E29-E35
-
-
Bellomo, D.1
Headrick, J.P.2
Silins, G.U.3
Paterson, C.A.4
Thomas, P.S.5
-
101
-
-
0032954241
-
Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature
-
Aase K, Lymboussaki A, Kaipainen A, Olofsson B, Alitalo K, ErikssonU. 1999. Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature. Dev. Dyn. 215(1):12-25
-
(1999)
Dev. Dyn
, vol.215
, Issue.1
, pp. 12-25
-
-
Aase, K.1
Lymboussaki, A.2
Kaipainen, A.3
Olofsson, B.4
Alitalo, K.5
Eriksson, U.6
-
102
-
-
0035902538
-
Vascular endothelial growth factor-Bdeficient mice display an atrial conduction defect
-
Aase K, Euler G, Li X, Pontén A, Thorén P, et al. 2001. Vascular endothelial growth factor-Bdeficient mice display an atrial conduction defect. Circulation 104(3):358-64
-
(2001)
Circulation
, vol.104
, Issue.3
, pp. 358-364
-
-
Aase, K.1
Euler, G.2
Li, X.3
Pontén, A.4
Thorén, P.5
-
103
-
-
51649123294
-
Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium
-
Li X, Tjwa M, Van Hove I, Enholm B, Neven E, et al. 2008. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler. Thromb. Vasc. Biol. 28(9):1614-20
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, Issue.9
, pp. 1614-1620
-
-
Li, X.1
Tjwa, M.2
Van Hove, I.3
Enholm, B.4
Neven, E.5
-
104
-
-
80455122752
-
Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis
-
Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R, et al. 2011. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479:122-26
-
(2011)
Nature
, vol.479
, pp. 122-126
-
-
Takeda, Y.1
Costa, S.2
Delamarre, E.3
Roncal, C.4
Leite De Oliveira, R.5
-
105
-
-
84958580469
-
Macrophages: An inflammatory link between angiogenesis and lymphangiogenesis
-
Corliss BA, AzimiMS, Munson JM, Peirce SM, Murfee WL. 2016. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 23(2):95-121
-
(2016)
Microcirculation
, vol.23
, Issue.2
, pp. 95-121
-
-
Corliss, B.A.1
Azimi, M.S.2
Munson, J.M.3
Peirce, S.M.4
Murfee, W.L.5
-
106
-
-
84909594606
-
Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart
-
Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, et al. 2014. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. PNAS 111(45):16029-34
-
(2014)
PNAS
, vol.111
, Issue.45
, pp. 16029-16034
-
-
Lavine, K.J.1
Epelman, S.2
Uchida, K.3
Weber, K.J.4
Nichols, C.G.5
-
107
-
-
84961664602
-
Primitive embryonic macrophages are required for coronary development and maturation
-
Leid JM, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. 2016. Primitive embryonic macrophages are required for coronary development and maturation. Circ. Res. 118(10):1498-511
-
(2016)
Circ. Res.
, vol.118
, Issue.10
, pp. 1498-1511
-
-
Leid, J.M.1
Carrelha, J.2
Boukarabila, H.3
Epelman, S.4
Jacobsen, S.E.5
Lavine, K.J.6
-
108
-
-
84910673362
-
Generation of functional human pancreatic B cells in vitro
-
Pagliuca FW,Millman JR,Gurtler M, SegelM,Dervort AV, et al. 2014. Generation of functional human pancreatic B cells in vitro. Cell 159(2):428-39
-
(2014)
Cell
, vol.159
, Issue.2
, pp. 428-439
-
-
Pagliuca, F.W.1
Millman, J.R.2
Gurtler, M.3
Segel, M.4
Dervort, A.V.5
-
109
-
-
84863626782
-
Heart repair by reprogramming non-myocytes with cardiac transcription factors
-
Song K, Nam Y, Luo X, Qi X, TanW, et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599-604
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
Nam, Y.2
Luo, X.3
Qi, X.4
Tan, W.5
-
110
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593-98
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
Huang, Y.2
Spencer, C.I.3
Foley, A.4
Vedantham, V.5
-
111
-
-
84986244097
-
In vivo cellular reprogramming: The next generation
-
Srivastava D, DeWitt N. 2016. In vivo cellular reprogramming: the next generation. Cell 166:1386-96
-
(2016)
Cell
, vol.166
, pp. 1386-1396
-
-
Srivastava, D.1
DeWitt, N.2
|