메뉴 건너뛰기




Volumn 79, Issue , 2017, Pages 1-19

Coronary Artery Development: Progenitor Cells and Differentiation Pathways

Author keywords

Blood flow; Coronary artery; Endocardium; Sinus venosus; Vascular remodeling

Indexed keywords

ANGIOGENESIS; ARTERY ENDOTHELIUM; CELL DIFFERENTIATION; CORONARY ARTERY; CORONARY ARTERY BLOOD FLOW; CORONARY ARTERY DISEASE; CORONARY ARTERY MUSCLE; HUMAN; MATURATION; NONHUMAN; PRIORITY JOURNAL; REVIEW; STEM CELL; VASCULAR REMODELING; ANIMAL; CORONARY BLOOD VESSEL; GROWTH, DEVELOPMENT AND AGING; HEART; ORGANOGENESIS; PATHOLOGY; PHYSIOLOGY;

EID: 85013066271     PISSN: 00664278     EISSN: 15451585     Source Type: Book Series    
DOI: 10.1146/annurev-physiol-022516-033953     Document Type: Review
Times cited : (79)

References (111)
  • 1
    • 84893651437 scopus 로고    scopus 로고
    • Heart disease and stroke statistics-2014 update: A report from the American Heart Association
    • GoAS,Mozaffarian D, RogerVL, Benjamin EJ, Berry JD, et al. 2014. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation 129(3):28-292
    • (2014) Circulation , vol.129 , Issue.3 , pp. 28-292
    • Go, A.S.1    Mozaffarian, D.2    Roger, V.L.3    Benjamin, E.J.4    Berry, J.D.5
  • 2
    • 84928254049 scopus 로고    scopus 로고
    • The cell biology of disease: Recent insights into the cellular biology of atherosclerosis
    • Tabas I, Garcia-Cardeña G, Owens GK. 2015. The cell biology of disease: recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209(1):13-22
    • (2015) J. Cell Biol. , vol.209 , Issue.1 , pp. 13-22
    • Tabas, I.1    Garcia-Cardeña, G.2    Owens, G.K.3
  • 3
    • 84878564646 scopus 로고    scopus 로고
    • Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors
    • Rubanyi GM. 2013. Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors. Mol. Ther. 21(4):725-38
    • (2013) Mol. Ther , vol.21 , Issue.4 , pp. 725-738
    • Rubanyi, G.M.1
  • 4
    • 57949098602 scopus 로고    scopus 로고
    • Collateral circulation: Past and present
    • SchaperW. 2009. Collateral circulation: past and present. Basic Res. Cardiol. 104(1):5-21
    • (2009) Basic Res. Cardiol , vol.104 , Issue.1 , pp. 5-21
    • Schaper, W.1
  • 5
    • 80052933197 scopus 로고    scopus 로고
    • Basic and therapeutic aspects of angiogenesis
    • Potente M, Gerhardt H, Carmeliet P. 2011. Basic and therapeutic aspects of angiogenesis. Cell 146(6):873-87
    • (2011) Cell , vol.146 , Issue.6 , pp. 873-887
    • Potente, M.1    Gerhardt, H.2    Carmeliet, P.3
  • 6
    • 65549111271 scopus 로고    scopus 로고
    • Coronary vessel development and insight towards neovascular therapy
    • Smart N, Dubé KN, Riley PR. 2009. Coronary vessel development and insight towards neovascular therapy. Int. J. Exp. Pathol. 90(3):262-83
    • (2009) Int. J. Exp. Pathol , vol.90 , Issue.3 , pp. 262-283
    • Smart, N.1    Dubé, K.N.2    Riley, P.R.3
  • 7
    • 84927169682 scopus 로고    scopus 로고
    • Cellular origin and developmental program of coronary angiogenesis
    • Tian X, Pu WT, Zhou B. 2015. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116(3):515-30
    • (2015) Circ. Res. , vol.116 , Issue.3 , pp. 515-530
    • Tian, X.1    Pu, W.T.2    Zhou, B.3
  • 8
    • 77950871039 scopus 로고    scopus 로고
    • Epicardial-myocardial signaling directing coronary vasculogenesis
    • Olivey HE, Svensson EC. 2010. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ. Res. 106(5):818-32
    • (2010) Circ. Res. , vol.106 , Issue.5 , pp. 818-832
    • Olivey, H.E.1    Svensson, E.C.2
  • 9
    • 84907487533 scopus 로고    scopus 로고
    • Connecting the coronaries: How the coronary plexus develops and is functionalized
    • Dyer L, Pi X, Patterson C. 2014. Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev. Biol. 395(1):111-19
    • (2014) Dev. Biol. , vol.395 , Issue.1 , pp. 111-119
    • Dyer, L.1    Pi, X.2    Patterson, C.3
  • 10
    • 77950237662 scopus 로고    scopus 로고
    • Coronary arteries form by developmental reprogramming of venous cells
    • Red-Horse K, Ueno H, Weissman IL, Krasnow MA. 2010. Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549-53
    • (2010) Nature , vol.464 , pp. 549-553
    • Red-Horse, K.1    Ueno, H.2    Weissman, I.L.3    Krasnow, M.A.4
  • 11
    • 70349914321 scopus 로고    scopus 로고
    • Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling
    • Zeini M, Hang CT, Lehrer-Graiwer J, Dao T, Zhou B, Chang C-P. 2009. Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling. Development 136(19):3335-45
    • (2009) Development , vol.136 , Issue.19 , pp. 3335-3345
    • Zeini, M.1    Hang, C.T.2    Lehrer-Graiwer, J.3    Dao, T.4    Zhou, B.5    Chang, C.-P.6
  • 12
    • 0025286780 scopus 로고
    • Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo
    • Waldo KL, Willner W, Kirby ML. 1990. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am. J. Anat. 188(2):109-20
    • (1990) Am. J. Anat , vol.188 , Issue.2 , pp. 109-120
    • Waldo, K.L.1    Willner, W.2    Kirby, M.L.3
  • 15
    • 84895734499 scopus 로고    scopus 로고
    • VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart
    • Kivelä R, Bry M, Robciuc MR, Räsänen M, Taavitsainen M, et al. 2014. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol. Med. 6(3):307-21
    • (2014) EMBO Mol. Med , vol.6 , Issue.3 , pp. 307-321
    • Kivelä, R.1    Bry, M.2    Robciuc, M.R.3    Räsänen, M.4    Taavitsainen, M.5
  • 17
    • 79961230399 scopus 로고    scopus 로고
    • Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
    • Armulik A, Genove G, Betsholtz C. 2011. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21(2):193-215
    • (2011) Dev. Cell , vol.21 , Issue.2 , pp. 193-215
    • Armulik, A.1    Genove, G.2    Betsholtz, C.3
  • 18
    • 48249129697 scopus 로고    scopus 로고
    • A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells
    • Passman JN, Dong X-R, Wu S-P, Maguire CT, Hogan KA, et al. 2008. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. PNAS 105(27):9349-54
    • (2008) PNAS , vol.105 , Issue.27 , pp. 9349-9354
    • Passman, J.N.1    Dong, X.-R.2    Wu, S.-P.3    Maguire, C.T.4    Hogan, K.A.5
  • 20
    • 84875066543 scopus 로고    scopus 로고
    • Coronary veins determine the pattern of sympathetic innervation in the developing heart
    • Nam J, Onitsuka I, Hatch J, Uchida Y, Ray S, et al. 2013. Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140(7):1475-85
    • (2013) Development , vol.140 , Issue.7 , pp. 1475-1485
    • Nam, J.1    Onitsuka, I.2    Hatch, J.3    Uchida, Y.4    Ray, S.5
  • 22
    • 84930639373 scopus 로고    scopus 로고
    • Cardiac lymphatics are heterogeneous in origin and respond to injury
    • Klotz L, Norman S, Vieira JM, MastersM, RohlingM, et al. 2015. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522:62-67
    • (2015) Nature , vol.522 , pp. 62-67
    • Klotz, L.1    Norman, S.2    Vieira, J.M.3    Masters, M.4    Rohling, M.5
  • 23
    • 84954401965 scopus 로고    scopus 로고
    • Developmental progression of the coronary vasculature in human embryos and fetuses
    • Tomanek RJ. 2016. Developmental progression of the coronary vasculature in human embryos and fetuses. Anat. Rec. 299(1):25-41
    • (2016) Anat. Rec , vol.299 , Issue.1 , pp. 25-41
    • Tomanek, R.J.1
  • 24
    • 85027471230 scopus 로고
    • The development of the blood supply to the heart in the embryo pig
    • Bennett HS. 1936. The development of the blood supply to the heart in the embryo pig. Am. J. Anat. 60(1):27-53
    • (1936) Am. J. Anat , vol.60 , Issue.1 , pp. 27-53
    • Bennett, H.S.1
  • 25
    • 0010107458 scopus 로고
    • The development of the cardiac-coronary circulatory system
    • Goldsmith JB, Butler HW. 1937. The development of the cardiac-coronary circulatory system. Am. J. Anat. 60(2):185-201
    • (1937) Am. J. Anat , vol.60 , Issue.2 , pp. 185-201
    • Goldsmith, J.B.1    Butler, H.W.2
  • 26
    • 18244416832 scopus 로고    scopus 로고
    • Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium
    • Männer J. 1999. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255(2):212-26
    • (1999) Anat. Rec , vol.255 , Issue.2 , pp. 212-226
    • Männer, J.1
  • 27
    • 0027227849 scopus 로고
    • Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras
    • Poelmann RE,Gittenberger-deGroot AC,Mentink MM, Bökenkamp R, Hogers B. 1993. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 73(3):559-68
    • (1993) Circ. Res. , vol.73 , Issue.3 , pp. 559-568
    • Poelmann, R.E.1    Gittenberger-DeGroot, A.C.2    Mentink, M.M.3    Bökenkamp, R.4    Hogers, B.5
  • 28
    • 0029964385 scopus 로고    scopus 로고
    • Pericardial mesoderm generates a population of coronary smoothmuscle cells migrating into the heart along with ingrowth of the epicardial organ
    • Mikawa T, Gourdie RG. 1996. Pericardial mesoderm generates a population of coronary smoothmuscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174(2):221-32
    • (1996) Dev. Biol. , vol.174 , Issue.2 , pp. 221-232
    • Mikawa, T.1    Gourdie, R.G.2
  • 30
    • 0026767366 scopus 로고
    • Retroviral analysis of cardiac morphogenesis: Discontinuous formation of coronary vessels
    • Mikawa T, Fischman DA. 1992. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. PNAS 89(20):9504-8
    • (1992) PNAS , vol.89 , Issue.20 , pp. 9504-9508
    • Mikawa, T.1    Fischman, D.A.2
  • 31
    • 84856090845 scopus 로고    scopus 로고
    • Lineage tracing
    • Kretzschmar K,Watt FM. 2012. Lineage tracing. Cell 148(1-2):33-45
    • (2012) Cell , vol.148 , Issue.1-2 , pp. 33-45
    • Kretzschmar, K.1    Watt, F.M.2
  • 32
    • 29444451293 scopus 로고    scopus 로고
    • Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation
    • Merki E, Zamora M, Raya A, Kawakami Y, Wang J, et al. 2005. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. PNAS 102(51):18455-60
    • (2005) PNAS , vol.102 , Issue.51 , pp. 18455-18460
    • Merki, E.1    Zamora, M.2    Raya, A.3    Kawakami, Y.4    Wang, J.5
  • 33
    • 46449089721 scopus 로고    scopus 로고
    • A myocardial lineage derives from Tbx18 epicardial cells
    • Cai C-L, Martin JC, Sun Y, Cui L, Wang L, et al. 2008. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104-8
    • (2008) Nature , vol.454 , pp. 104-108
    • Cai, C.-L.1    Martin, J.C.2    Sun, Y.3    Cui, L.4    Wang, L.5
  • 34
    • 46449138664 scopus 로고    scopus 로고
    • Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart
    • Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, et al. 2008. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109-13
    • (2008) Nature , vol.454 , pp. 109-113
    • Zhou, B.1    Ma, Q.2    Rajagopal, S.3    Wu, S.M.4    Domian, I.5
  • 35
    • 84911489742 scopus 로고    scopus 로고
    • The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis
    • Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivelä R, et al. 2014. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141(23):4500-12
    • (2014) Development , vol.141 , Issue.23 , pp. 4500-4512
    • Chen, H.I.1    Sharma, B.2    Akerberg, B.N.3    Numi, H.J.4    Kivelä, R.5
  • 36
    • 84883318758 scopus 로고    scopus 로고
    • Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries
    • Tian X,HuT, ZhangH,HeL,Huang X, et al. 2013. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23(9):1075-90
    • (2013) Cell Res. , vol.23 , Issue.9 , pp. 1075-1090
    • Tian, X.1    Hu, T.2    Zhang, H.3    He, L.4    Huang, X.5
  • 37
    • 84875893300 scopus 로고    scopus 로고
    • Haemogenic endocardium contributes to transient definitive haematopoiesis
    • Nakano H, Liu X, Arshi A, Nakashima Y, van Handel B, et al. 2013. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4:1564
    • (2013) Nat. Commun , vol.4 , pp. 1564
    • Nakano, H.1    Liu, X.2    Arshi, A.3    Nakashima, Y.4    Van Handel, B.5
  • 38
    • 33646155950 scopus 로고    scopus 로고
    • VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo
    • Tomanek RJ, Ishii Y, Holifield JS, Sjogren CL, Hansen HK, Mikawa T. 2006. VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circ. Res. 98(7):947-53
    • (2006) Circ. Res. , vol.98 , Issue.7 , pp. 947-953
    • Tomanek, R.J.1    Ishii, Y.2    Holifield, J.S.3    Sjogren, C.L.4    Hansen, H.K.5    Mikawa, T.6
  • 39
    • 84880780215 scopus 로고    scopus 로고
    • Accelerated coronary angiogenesis by Vegfr1-knockout endocardial cells
    • Zhang Z, Zhou B. 2013. Accelerated coronary angiogenesis by Vegfr1-knockout endocardial cells. PLOS ONE 8(7):e70570
    • (2013) PLOS ONE , vol.8 , Issue.7 , pp. e70570
    • Zhang, Z.1    Zhou, B.2
  • 40
    • 35448946457 scopus 로고    scopus 로고
    • Coronary vessel development is dependent on the type III transforming growth factor βreceptor
    • Compton LA, Potash DA, Brown CB, Barnett JV. 2007. Coronary vessel development is dependent on the type III transforming growth factor βreceptor. Circ. Res. 101(8):784-91
    • (2007) Circ. Res. , vol.101 , Issue.8 , pp. 784-791
    • Compton, L.A.1    Potash, D.A.2    Brown, C.B.3    Barnett, J.V.4
  • 41
    • 84949845526 scopus 로고    scopus 로고
    • Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos
    • Yzaguirre AD, Padmanabhan A, Groh ED, Engleka KA, Li J, et al. 2015. Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. eLife 4:e07780
    • (2015) ELife , vol.4 , pp. e07780
    • Yzaguirre, A.D.1    Padmanabhan, A.2    Groh, E.D.3    Engleka, K.A.4    Li, J.5
  • 42
    • 84870043996 scopus 로고    scopus 로고
    • Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling
    • Wu B, Zhang Z, Lui W, Chen X, Wang Y, et al. 2012. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151(5):1083-96
    • (2012) Cell , vol.151 , Issue.5 , pp. 1083-1096
    • Wu, B.1    Zhang, Z.2    Lui, W.3    Chen, X.4    Wang, Y.5
  • 43
    • 84863229669 scopus 로고    scopus 로고
    • Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
    • KatzTC, SinghMK, DegenhardtK, Rivera-Feliciano J, Johnson RL, et al. 2012. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22(3):639-50
    • (2012) Dev. Cell , vol.22 , Issue.3 , pp. 639-650
    • Katz, T.C.1    Singh, M.K.2    Degenhardt, K.3    Rivera-Feliciano, J.4    Johnson, R.L.5
  • 44
    • 84964997228 scopus 로고    scopus 로고
    • Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development
    • Singh A, Ramesh S, Cibi DM, Yun LS, Li J, et al. 2016. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 15(7):1384-93
    • (2016) Cell Rep. , vol.15 , Issue.7 , pp. 1384-1393
    • Singh, A.1    Ramesh, S.2    Cibi, D.M.3    Yun, L.S.4    Li, J.5
  • 45
    • 84963705843 scopus 로고    scopus 로고
    • Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls
    • Zhang H, Pu W, Li G, Huang X, He L, et al. 2016. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118:1880-93
    • (2016) Circ. Res. , vol.118 , pp. 1880-1893
    • Zhang, H.1    Pu, W.2    Li, G.3    Huang, X.4    He, L.5
  • 46
    • 84903703870 scopus 로고    scopus 로고
    • Vessel formation de novo formation of a distinct coronary vascular population in neonatal heart
    • Tian X, Hu T, Zhang H, He L, Huang X, et al. 2014. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345:90-94
    • (2014) Science , vol.345 , pp. 90-94
    • Tian, X.1    Hu, T.2    Zhang, H.3    He, L.4    Huang, X.5
  • 47
    • 84905269218 scopus 로고    scopus 로고
    • Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart
    • Arita Y, Nakaoka Y, Matsunaga T, Kidoya H, Yamamizu K, et al. 2014. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat. Commun. 5:4552
    • (2014) Nat. Commun , vol.5 , pp. 4552
    • Arita, Y.1    Nakaoka, Y.2    Matsunaga, T.3    Kidoya, H.4    Yamamizu, K.5
  • 48
    • 0033005665 scopus 로고    scopus 로고
    • YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis
    • Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. 1999. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126(9):1845-57
    • (1999) Development , vol.126 , Issue.9 , pp. 1845-1857
    • Moore, A.W.1    McInnes, L.2    Kreidberg, J.3    Hastie, N.D.4    Schedl, A.5
  • 49
    • 0028952534 scopus 로고
    • Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice
    • Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, et al. 1995. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121(2):489-503
    • (1995) Development , vol.121 , Issue.2 , pp. 489-503
    • Kwee, L.1    Baldwin, H.S.2    Shen, H.M.3    Stewart, C.L.4    Buck, C.5
  • 50
    • 84885857490 scopus 로고    scopus 로고
    • Tbx18 regulates development of the epicardium and coronary vessels
    • Wu S-P, Dong X-R, Regan JN, Su C, Majesky MW. 2013. Tbx18 regulates development of the epicardium and coronary vessels. Dev. Biol. 383(2):307-20
    • (2013) Dev. Biol. , vol.383 , Issue.2 , pp. 307-320
    • Wu, S.-P.1    Dong, X.-R.2    Regan, J.N.3    Su, C.4    Majesky, M.W.5
  • 51
    • 33745129425 scopus 로고    scopus 로고
    • Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development
    • Lavine KJ,White AC, Park C, Smith CS, Choi K, et al. 2006. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 20(12):1651-66
    • (2006) Genes Dev , vol.20 , Issue.12 , pp. 1651-1666
    • Lavine, K.J.1    White, A.C.2    Park, C.3    Smith, C.S.4    Choi, K.5
  • 52
    • 67651005839 scopus 로고    scopus 로고
    • Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart
    • Ma Q, Kong SW, Hu Y, Campbell PH, McGowan FX, et al. 2009. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J. Clin. Investig. 119(6):1462-76
    • (2009) J. Clin. Investig , vol.119 , Issue.6 , pp. 1462-1476
    • Ma, Q.1    Kong, S.W.2    Hu, Y.3    Campbell, P.H.4    McGowan, F.X.5
  • 54
    • 84871754528 scopus 로고    scopus 로고
    • Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling
    • Arima Y,Miyagawa-Tomita S, Maeda K, Asai R, Seya D, et al. 2012. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat. Commun. 3:1267
    • (2012) Nat. Commun , vol.3 , pp. 1267
    • Arima, Y.1    Miyagawa-Tomita, S.2    Maeda, K.3    Asai, R.4    Seya, D.5
  • 55
    • 84861394103 scopus 로고    scopus 로고
    • The bHLHtranscription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors
    • Acharya A, Baek ST, HuangG, Eskiocak B, Goetsch S, et al. 2012. The bHLHtranscription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139(12):2139-49
    • (2012) Development , vol.139 , Issue.12 , pp. 2139-2149
    • Acharya, A.1    Baek, S.T.2    Huang, G.3    Eskiocak, B.4    Goetsch, S.5
  • 57
    • 0028237124 scopus 로고
    • Association of the cardiac neural crest with development of the coronary arteries in the chick embryo
    • Waldo KL, Kumiski DH, Kirby ML. 1994. Association of the cardiac neural crest with development of the coronary arteries in the chick embryo. Anat. Rec. 239(3):315-31
    • (1994) Anat. Rec , vol.239 , Issue.3 , pp. 315-331
    • Waldo, K.L.1    Kumiski, D.H.2    Kirby, M.L.3
  • 58
    • 0026701709 scopus 로고
    • Coronary artery development in the chick: Origin and deployment of smooth muscle cells, and the effects of neural crest ablation
    • Hood LC, Rosenquist TH. 1992. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat. Rec. 234(2):291-300
    • (1992) Anat. Rec , vol.234 , Issue.2 , pp. 291-300
    • Hood, L.C.1    Rosenquist, T.H.2
  • 59
    • 84982313678 scopus 로고    scopus 로고
    • Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells
    • Chen Q, Zhang H, Liu Y, Adams S, Eilken H, et al. 2016. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7:12422
    • (2016) Nat. Commun , vol.7 , pp. 12422
    • Chen, Q.1    Zhang, H.2    Liu, Y.3    Adams, S.4    Eilken, H.5
  • 61
    • 58149392309 scopus 로고    scopus 로고
    • Platelet-derived growth factor receptor β signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations
    • Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B, et al. 2008. Platelet-derived growth factor receptor β signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ. Res. 103(12):1393-401
    • (2008) Circ. Res. , vol.103 , Issue.12 , pp. 1393-1401
    • Mellgren, A.M.1    Smith, C.L.2    Olsen, G.S.3    Eskiocak, B.4    Zhou, B.5
  • 62
    • 79958799319 scopus 로고    scopus 로고
    • Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling
    • Smith CL, Blaek ST, Sung CY, Tallquist MD. 2011. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108:e15-26
    • (2011) Circ. Res. , vol.108 , pp. e15-e26
    • Smith, C.L.1    Blaek, S.T.2    Sung, C.Y.3    Tallquist, M.D.4
  • 63
    • 84864067904 scopus 로고    scopus 로고
    • Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart
    • Braitsch CM, Combs MD, Quaggin SE, Yutzey KE. 2012. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev. Biol. 368(2):345-57
    • (2012) Dev. Biol. , vol.368 , Issue.2 , pp. 345-357
    • Braitsch, C.M.1    Combs, M.D.2    Quaggin, S.E.3    Yutzey, K.E.4
  • 64
    • 84960364577 scopus 로고    scopus 로고
    • Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo
    • Liu Q, Zhang H, Tian X, He L, Huang X, et al. 2016. Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochem. Biophys. Res. Commun. 471(4):430-36
    • (2016) Biochem. Biophys. Res. Commun , vol.471 , Issue.4 , pp. 430-436
    • Liu, Q.1    Zhang, H.2    Tian, X.3    He, L.4    Huang, X.5
  • 65
    • 84954512505 scopus 로고    scopus 로고
    • Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration
    • Cao J, Navis A, Cox BD, Dickson AL, Gemberling M, et al. 2016. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143(2):232-43
    • (2016) Development , vol.143 , Issue.2 , pp. 232-243
    • Cao, J.1    Navis, A.2    Cox, B.D.3    Dickson, A.L.4    Gemberling, M.5
  • 66
    • 84922606875 scopus 로고    scopus 로고
    • The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming
    • Unternaehrer JJ, Zhao R, Kim K, Cesana M, Powers JT, et al. 2014. The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Rep. 3(5):691-98
    • (2014) Stem Cell Rep. , vol.3 , Issue.5 , pp. 691-698
    • Unternaehrer, J.J.1    Zhao, R.2    Kim, K.3    Cesana, M.4    Powers, J.T.5
  • 67
    • 84857817163 scopus 로고    scopus 로고
    • Slug and Sox9 cooperatively determine the mammary stem cell state
    • Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, et al. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148(5):1015-28
    • (2012) Cell , vol.148 , Issue.5 , pp. 1015-1028
    • Guo, W.1    Keckesova, Z.2    Donaher, J.L.3    Shibue, T.4    Tischler, V.5
  • 68
    • 84955286490 scopus 로고    scopus 로고
    • Pericytes are progenitors for coronary artery smooth muscle
    • Volz KS, Jacobs AH, Chen HI, Poduri A,McKay AS, et al. 2015. Pericytes are progenitors for coronary artery smooth muscle. eLife 4:e10036
    • (2015) ELife , vol.4 , pp. e10036
    • Volz, K.S.1    Jacobs, A.H.2    Chen, H.I.3    Poduri, A.4    McKay, A.S.5
  • 69
    • 84918515802 scopus 로고    scopus 로고
    • Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels
    • Trembley MA, Velasquez LS, Mesy Bentley KL, Small EM. 2015. Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development 142(1):21-30
    • (2015) Development , vol.142 , Issue.1 , pp. 21-30
    • Trembley, M.A.1    Velasquez, L.S.2    Mesy Bentley, K.L.3    Small, E.M.4
  • 70
    • 79954793035 scopus 로고    scopus 로고
    • Notch signaling regulates smooth muscle differentiation of epicardium-derived cells
    • Grieskamp T, Rudat C, Lüdtke T-W, Norden J, Kispert A. 2011. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ. Res. 108(7):813-23
    • (2011) Circ. Res. , vol.108 , Issue.7 , pp. 813-823
    • Grieskamp, T.1    Rudat, C.2    Lüdtke, T.-W.3    Norden, J.4    Kispert, A.5
  • 71
    • 77958016857 scopus 로고    scopus 로고
    • Notch3 is critical for proper angiogenesis and mural cell investment
    • Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. 2010. Notch3 is critical for proper angiogenesis and mural cell investment. Circ. Res. 107(7):860-70
    • (2010) Circ. Res. , vol.107 , Issue.7 , pp. 860-870
    • Liu, H.1    Zhang, W.2    Kennard, S.3    Caldwell, R.B.4    Lilly, B.5
  • 72
    • 84868514989 scopus 로고    scopus 로고
    • Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome
    • Hofmann JJ, Briot A, Enciso J, Zovein AC, Ren S, et al. 2012. Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development 139(23):4449-60
    • (2012) Development , vol.139 , Issue.23 , pp. 4449-4460
    • Hofmann, J.J.1    Briot, A.2    Enciso, J.3    Zovein, A.C.4    Ren, S.5
  • 73
    • 84961778419 scopus 로고    scopus 로고
    • Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium
    • Kerr BA, West XZ, Kim Y-W, Zhao Y, Tischenko M, et al. 2016. Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium. Nat. Commun. 7:10960
    • (2016) Nat. Commun , vol.7 , pp. 10960
    • Kerr, B.A.1    West, X.Z.2    Kim, Y.-W.3    Zhao, Y.4    Tischenko, M.5
  • 74
    • 84908627886 scopus 로고    scopus 로고
    • VEGF-C and aortic cardiomyocytes guide coronary artery stem development
    • Chen HI, Poduri A, Numi H, Kivelä R, Saharinen P, et al. 2014. VEGF-C and aortic cardiomyocytes guide coronary artery stem development. J. Clin. Investig. 124(11):4899-914
    • (2014) J. Clin. Investig , vol.124 , Issue.11 , pp. 4899-4914
    • Chen, H.I.1    Poduri, A.2    Numi, H.3    Kivelä, R.4    Saharinen, P.5
  • 75
    • 84929914270 scopus 로고    scopus 로고
    • The CXCL12/CXCR4 axis plays a critical role in coronary artery development
    • Ivins S, Chappell J, Vernay B, Suntharalingham J, Martineau A, et al. 2015. The CXCL12/CXCR4 axis plays a critical role in coronary artery development. Dev. Cell 33(4):455-68
    • (2015) Dev. Cell , vol.33 , Issue.4 , pp. 455-468
    • Ivins, S.1    Chappell, J.2    Vernay, B.3    Suntharalingham, J.4    Martineau, A.5
  • 76
    • 33947728336 scopus 로고    scopus 로고
    • Coronary artery anomalies: An entity in search of an identity
    • Angelini P. 2007. Coronary artery anomalies: an entity in search of an identity. Circulation 115(10):1296-305
    • (2007) Circulation , vol.115 , Issue.10 , pp. 1296-1305
    • Angelini, P.1
  • 77
    • 62449259367 scopus 로고    scopus 로고
    • Congenital coronary artery anomalies in adults: Non-invasive assessment with multidetector CT
    • Zeina AR, Blinder J, Sharif D, Rosenschein U, Barmeir E. 2014. Congenital coronary artery anomalies in adults: non-invasive assessment with multidetector CT. Br. J. Radiol. 82(975):254-61
    • (2014) Br. J. Radiol , vol.82 , Issue.975 , pp. 254-261
    • Zeina, A.R.1    Blinder, J.2    Sharif, D.3    Rosenschein, U.4    Barmeir, E.5
  • 78
    • 0014319023 scopus 로고
    • Anomalous origin of the left coronary artery from the pulmonary trunk Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases
    • Wesselhoeft H, Fawcett JS, Johnson AL. 1968. Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation 38(2):403-25
    • (1968) Circulation , vol.38 , Issue.2 , pp. 403-425
    • Wesselhoeft, H.1    Fawcett, J.S.2    Johnson, A.L.3
  • 79
    • 23944507512 scopus 로고    scopus 로고
    • Congenital anomalies of the coronary arteries
    • Hauser M. 2005. Congenital anomalies of the coronary arteries. Heart 91(9):1240-45
    • (2005) Heart , vol.91 , Issue.9 , pp. 1240-1245
    • Hauser, M.1
  • 80
    • 80052963564 scopus 로고    scopus 로고
    • Outcomes of coronary reimplantation for correction of anomalous origin of left coronary artery from pulmonary artery
    • Ramírez S, Curi-Curi PJ, Calderón-Colmenero J, García J, Britton C, et al. 2011. Outcomes of coronary reimplantation for correction of anomalous origin of left coronary artery from pulmonary artery. Rev. Esp. Cardiol. 64(8):681-87
    • (2011) Rev. Esp. Cardiol , vol.64 , Issue.8 , pp. 681-687
    • Ramírez, S.1    Curi-Curi, P.J.2    Calderón-Colmenero, J.3    García, J.4    Britton, C.5
  • 82
    • 84894311896 scopus 로고    scopus 로고
    • Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart
    • Tian X, Hu T, He L, Zhang H, Huang X, et al. 2013. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLOS ONE 8(11):e80857
    • (2013) PLOS ONE , vol.8 , Issue.11 , pp. e80857
    • Tian, X.1    Hu, T.2    He, L.3    Zhang, H.4    Huang, X.5
  • 83
    • 0043133835 scopus 로고    scopus 로고
    • BMPER, a novel endothelial cell precursorderived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation
    • MoserM, BinderO,Wu Y, Aitsebaomo J, Ren R, et al. 2003. BMPER, a novel endothelial cell precursorderived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol. Cell. Biol. 23(16):5664-79
    • (2003) Mol. Cell. Biol. , vol.23 , Issue.16 , pp. 5664-5679
    • Moser, M.1    Binder, O.2    Wu, Y.3    Aitsebaomo, J.4    Ren, R.5
  • 84
    • 54449100051 scopus 로고    scopus 로고
    • BMPERis an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis
    • Heinke J, Wehofsits L, ZhouQ, ZoellerC, Baar K-M, et al. 2008.BMPERis an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ. Res. 103(8):804-12
    • (2008) Circ. Res. , vol.103 , Issue.8 , pp. 804-812
    • Heinke, J.1    Wehofsits, L.2    Zhou, Q.3    Zoeller, C.4    Baar, K.-M.5
  • 85
    • 84892843786 scopus 로고    scopus 로고
    • BMPER-induced BMP signaling promotes coronary artery remodeling
    • Dyer L,WuY, MoserM, Patterson C. 2014. BMPER-induced BMP signaling promotes coronary artery remodeling. Dev. Biol. 386(2):385-94
    • (2014) Dev. Biol. , vol.386 , Issue.2 , pp. 385-394
    • Dyer, L.1    Wu, Y.2    Moser, M.3    Patterson, C.4
  • 86
    • 84929865692 scopus 로고    scopus 로고
    • CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation
    • Cavallero S, Shen H, Yi C, Lien C-L, Kumar SR, Sucov HM. 2015. CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev. Cell 33(4):469-77
    • (2015) Dev. Cell , vol.33 , Issue.4 , pp. 469-477
    • Cavallero, S.1    Shen, H.2    Yi, C.3    Lien, C.-L.4    Kumar, S.R.5    Sucov, H.M.6
  • 88
    • 0842322958 scopus 로고    scopus 로고
    • Flow regulates arterial-venous differentiation in the chick embryo yolk sac
    • Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, et al. 2004. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131(2):361-75
    • (2004) Development , vol.131 , Issue.2 , pp. 361-375
    • Le Noble, F.1    Moyon, D.2    Pardanaud, L.3    Yuan, L.4    Djonov, V.5
  • 90
    • 84879666845 scopus 로고    scopus 로고
    • Notch controls retinal blood vessel maturation and quiescence
    • Ehling M, Adams S, Benedito R, Adams RH. 2013. Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051-61
    • (2013) Development , vol.140 , Issue.14 , pp. 3051-3061
    • Ehling, M.1    Adams, S.2    Benedito, R.3    Adams, R.H.4
  • 91
    • 84924561757 scopus 로고    scopus 로고
    • Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency
    • Theodoris CV, Li M, White MP, Liu L, He D, et al. 2015. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160(6):1072-86
    • (2015) Cell , vol.160 , Issue.6 , pp. 1072-1086
    • Theodoris, C.V.1    Li, M.2    White, M.P.3    Liu, L.4    He, D.5
  • 92
    • 84884236484 scopus 로고    scopus 로고
    • Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac
    • Udan RS, Vadakkan TJ, Dickinson ME. 2013. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140(19):4041-50
    • (2013) Development , vol.140 , Issue.19 , pp. 4041-4050
    • Udan, R.S.1    Vadakkan, T.J.2    Dickinson, M.E.3
  • 93
    • 77958541375 scopus 로고    scopus 로고
    • Dynamic analysis of vascular morphogenesis using transgenic quail embryos
    • Sato Y, PoynterG,HussD, Filla MB, Czirok A, et al. 2010. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLOS ONE 5(9):e12674
    • (2010) PLOS ONE , vol.5 , Issue.9 , pp. e12674
    • Sato, Y.1    Poynter, G.2    Huss, D.3    Filla, M.B.4    Czirok, A.5
  • 94
    • 84942900570 scopus 로고    scopus 로고
    • Molecular controls of arterial morphogenesis
    • Simons M, Eichmann A. 2015. Molecular controls of arterial morphogenesis. Circ. Res. 116(10):1712-24
    • (2015) Circ. Res. , vol.116 , Issue.10 , pp. 1712-1724
    • Simons, M.1    Eichmann, A.2
  • 95
    • 33744483170 scopus 로고    scopus 로고
    • Selective regulation of arterial branching morphogenesis by synectin
    • Chittenden TW, Claes F, Lanahan AA, AutieroM, Palac RT, et al. 2006. Selective regulation of arterial branching morphogenesis by synectin. Dev. Cell 10(6):783-95
    • (2006) Dev. Cell , vol.10 , Issue.6 , pp. 783-795
    • Chittenden, T.W.1    Claes, F.2    Lanahan, A.A.3    Autiero, M.4    Palac, R.T.5
  • 97
    • 84886088990 scopus 로고    scopus 로고
    • Endothelial cell-dependent regulation of arteriogenesis
    • Moraes F, Paye J, Mac Gabhann F, Zhuang ZW, Zhang J, et al. 2013. Endothelial cell-dependent regulation of arteriogenesis. Circ. Res. 113(9):1076-86
    • (2013) Circ. Res. , vol.113 , Issue.9 , pp. 1076-1086
    • Moraes, F.1    Paye, J.2    Mac Gabhann, F.3    Zhuang, Z.W.4    Zhang, J.5
  • 98
    • 84876976777 scopus 로고    scopus 로고
    • The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis
    • Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, et al. 2013. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev. Cell 25(2):156-68
    • (2013) Dev. Cell , vol.25 , Issue.2 , pp. 156-168
    • Lanahan, A.1    Zhang, X.2    Fantin, A.3    Zhuang, Z.4    Rivera-Molina, F.5
  • 99
    • 84898888747 scopus 로고    scopus 로고
    • Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction
    • Liu Y, Lu X, Xiang F-L, Poelmann RE, Gittenberger-Groot AC, et al. 2014. Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction. Eur. Heart J. 35(14):920-31
    • (2014) Eur. Heart J , vol.35 , Issue.14 , pp. 920-931
    • Liu, Y.1    Lu, X.2    Xiang, F.-L.3    Poelmann, R.E.4    Gittenberger-Groot, A.C.5
  • 100
    • 18844473540 scopus 로고    scopus 로고
    • Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia
    • Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, et al. 2000. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86(2):E29-35
    • (2000) Circ. Res. , vol.86 , Issue.2 , pp. E29-E35
    • Bellomo, D.1    Headrick, J.P.2    Silins, G.U.3    Paterson, C.A.4    Thomas, P.S.5
  • 101
    • 0032954241 scopus 로고    scopus 로고
    • Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature
    • Aase K, Lymboussaki A, Kaipainen A, Olofsson B, Alitalo K, ErikssonU. 1999. Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature. Dev. Dyn. 215(1):12-25
    • (1999) Dev. Dyn , vol.215 , Issue.1 , pp. 12-25
    • Aase, K.1    Lymboussaki, A.2    Kaipainen, A.3    Olofsson, B.4    Alitalo, K.5    Eriksson, U.6
  • 102
    • 0035902538 scopus 로고    scopus 로고
    • Vascular endothelial growth factor-Bdeficient mice display an atrial conduction defect
    • Aase K, Euler G, Li X, Pontén A, Thorén P, et al. 2001. Vascular endothelial growth factor-Bdeficient mice display an atrial conduction defect. Circulation 104(3):358-64
    • (2001) Circulation , vol.104 , Issue.3 , pp. 358-364
    • Aase, K.1    Euler, G.2    Li, X.3    Pontén, A.4    Thorén, P.5
  • 103
    • 51649123294 scopus 로고    scopus 로고
    • Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium
    • Li X, Tjwa M, Van Hove I, Enholm B, Neven E, et al. 2008. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler. Thromb. Vasc. Biol. 28(9):1614-20
    • (2008) Arterioscler. Thromb. Vasc. Biol. , vol.28 , Issue.9 , pp. 1614-1620
    • Li, X.1    Tjwa, M.2    Van Hove, I.3    Enholm, B.4    Neven, E.5
  • 104
    • 80455122752 scopus 로고    scopus 로고
    • Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis
    • Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R, et al. 2011. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479:122-26
    • (2011) Nature , vol.479 , pp. 122-126
    • Takeda, Y.1    Costa, S.2    Delamarre, E.3    Roncal, C.4    Leite De Oliveira, R.5
  • 106
    • 84909594606 scopus 로고    scopus 로고
    • Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart
    • Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, et al. 2014. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. PNAS 111(45):16029-34
    • (2014) PNAS , vol.111 , Issue.45 , pp. 16029-16034
    • Lavine, K.J.1    Epelman, S.2    Uchida, K.3    Weber, K.J.4    Nichols, C.G.5
  • 107
    • 84961664602 scopus 로고    scopus 로고
    • Primitive embryonic macrophages are required for coronary development and maturation
    • Leid JM, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. 2016. Primitive embryonic macrophages are required for coronary development and maturation. Circ. Res. 118(10):1498-511
    • (2016) Circ. Res. , vol.118 , Issue.10 , pp. 1498-1511
    • Leid, J.M.1    Carrelha, J.2    Boukarabila, H.3    Epelman, S.4    Jacobsen, S.E.5    Lavine, K.J.6
  • 108
    • 84910673362 scopus 로고    scopus 로고
    • Generation of functional human pancreatic B cells in vitro
    • Pagliuca FW,Millman JR,Gurtler M, SegelM,Dervort AV, et al. 2014. Generation of functional human pancreatic B cells in vitro. Cell 159(2):428-39
    • (2014) Cell , vol.159 , Issue.2 , pp. 428-439
    • Pagliuca, F.W.1    Millman, J.R.2    Gurtler, M.3    Segel, M.4    Dervort, A.V.5
  • 109
    • 84863626782 scopus 로고    scopus 로고
    • Heart repair by reprogramming non-myocytes with cardiac transcription factors
    • Song K, Nam Y, Luo X, Qi X, TanW, et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599-604
    • (2012) Nature , vol.485 , pp. 599-604
    • Song, K.1    Nam, Y.2    Luo, X.3    Qi, X.4    Tan, W.5
  • 110
    • 84863629484 scopus 로고    scopus 로고
    • In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
    • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593-98
    • (2012) Nature , vol.485 , pp. 593-598
    • Qian, L.1    Huang, Y.2    Spencer, C.I.3    Foley, A.4    Vedantham, V.5
  • 111
    • 84986244097 scopus 로고    scopus 로고
    • In vivo cellular reprogramming: The next generation
    • Srivastava D, DeWitt N. 2016. In vivo cellular reprogramming: the next generation. Cell 166:1386-96
    • (2016) Cell , vol.166 , pp. 1386-1396
    • Srivastava, D.1    DeWitt, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.