메뉴 건너뛰기




Volumn 22, Issue 4, 2017, Pages 712-717

Next-generation sequencing: big data meets high performance computing

Author keywords

[No Author keywords available]

Indexed keywords

CANCER THERAPY; GENOME; HUMAN; NEXT GENERATION SEQUENCING; PERSONALIZED MEDICINE; ALGORITHM; COMPUTER ANALYSIS; DNA SEQUENCE; ECONOMICS; GENETIC DATABASE; GENETICS; GENOMICS; HIGH THROUGHPUT SEQUENCING; PROCEDURES;

EID: 85012267076     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2017.01.014     Document Type: Review
Times cited : (106)

References (80)
  • 1
    • 84929132687 scopus 로고    scopus 로고
    • Large-scale whole-genome sequencing of the Icelandic population
    • 1 Gudbjartsson, D.F., et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47 (2015), 435–444.
    • (2015) Nat. Genet. , vol.47 , pp. 435-444
    • Gudbjartsson, D.F.1
  • 2
    • 84955480509 scopus 로고    scopus 로고
    • Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children
    • 2 Korpela, K., et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7 (2016), 1–8.
    • (2016) Nat. Commun. , vol.7 , pp. 1-8
    • Korpela, K.1
  • 3
    • 84938709678 scopus 로고    scopus 로고
    • Big data: astronomical or genomical?
    • 3 Stephens, Z.D., et al. Big data: astronomical or genomical?. PLoS Biol., 13, 2015, e1002195.
    • (2015) PLoS Biol. , vol.13 , pp. e1002195
    • Stephens, Z.D.1
  • 4
    • 84949512157 scopus 로고    scopus 로고
    • Next-generation sequencing and empowering personalized cancer medicine
    • 4 McDermott, U., Next-generation sequencing and empowering personalized cancer medicine. Drug Discov. Today 20 (2015), 1470–1475.
    • (2015) Drug Discov. Today , vol.20 , pp. 1470-1475
    • McDermott, U.1
  • 5
    • 84869396522 scopus 로고    scopus 로고
    • Pharmacogenomics in clinical practice and drug development
    • 5 Harper, A.R., Topol, E.J., Pharmacogenomics in clinical practice and drug development. Nat. Biotechnol. 30 (2012), 1117–1124.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 1117-1124
    • Harper, A.R.1    Topol, E.J.2
  • 6
    • 84939563386 scopus 로고    scopus 로고
    • Serine arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer
    • 6 Mavrou, A., et al. Serine arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene 34 (2015), 4311–4319.
    • (2015) Oncogene , vol.34 , pp. 4311-4319
    • Mavrou, A.1
  • 7
    • 84883642880 scopus 로고    scopus 로고
    • Topical antiangiogenic SRPK1 inhibitors reduce choroidal neovascularization in rodent models of exudative AMD
    • 7 Gammons, M.V., Topical antiangiogenic SRPK1 inhibitors reduce choroidal neovascularization in rodent models of exudative AMD. Invest. Opthalmol. Vis. Sci., 54, 2013, 6052.
    • (2013) Invest. Opthalmol. Vis. Sci. , vol.54 , pp. 6052
    • Gammons, M.V.1
  • 8
    • 84905503012 scopus 로고    scopus 로고
    • Therapeutic targeting of microRNAs: current status and future challenges
    • 8 Li, Z., Rana, T.M., Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov. 13 (2014), 622–638.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 622-638
    • Li, Z.1    Rana, T.M.2
  • 9
    • 84901684202 scopus 로고    scopus 로고
    • Use of epigenetic drugs in disease: an overview
    • 9 Heerboth, S., et al. Use of epigenetic drugs in disease: an overview. Genet. Epigenet. 6 (2014), 9–19.
    • (2014) Genet. Epigenet. , vol.6 , pp. 9-19
    • Heerboth, S.1
  • 11
    • 84942867257 scopus 로고    scopus 로고
    • Biological data sciences in genome research
    • 11 Schatz, M.C., Biological data sciences in genome research. Genome Res. 25 (2015), 1417–1422.
    • (2015) Genome Res. , vol.25 , pp. 1417-1422
    • Schatz, M.C.1
  • 12
    • 49049088756 scopus 로고    scopus 로고
    • GPU computing
    • 12 Owens, J.D., et al. GPU computing. Proc. IEEE 96 (2008), 879–899.
    • (2008) Proc. IEEE , vol.96 , pp. 879-899
    • Owens, J.D.1
  • 13
    • 0000227930 scopus 로고    scopus 로고
    • Reconfigurable computing: a survey of systems and software
    • 13 Compton, K., Hauck, S., Reconfigurable computing: a survey of systems and software. ACM Computing Surveys 34 (2002), 171–210.
    • (2002) ACM Computing Surveys , vol.34 , pp. 171-210
    • Compton, K.1    Hauck, S.2
  • 14
    • 84857838310 scopus 로고    scopus 로고
    • Efficient de novo assembly of large genomes using compressed data structures
    • 14 Simpson, J.T., Durbin, R., Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22 (2012), 549–556.
    • (2012) Genome Res. , vol.22 , pp. 549-556
    • Simpson, J.T.1    Durbin, R.2
  • 15
    • 84873307492 scopus 로고    scopus 로고
    • Musket: a multistage k-mer spectrum-based error corrector for illumina sequence data
    • 15 Liu, Y., Musket: a multistage k-mer spectrum-based error corrector for illumina sequence data. Bioinformatics 29 (2013), 308–315.
    • (2013) Bioinformatics , vol.29 , pp. 308-315
    • Liu, Y.1
  • 16
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie2
    • 16 Langmead, B., Salzberg, S.L., Fast gapped-read alignment with Bowtie2. Nat. Methods 9 (2012), 357–359.
    • (2012) Nat. Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 17
    • 84899090573 scopus 로고    scopus 로고
    • Kraken: ultrafast metagenomics sequence classification using exact alignments
    • 17 Wood, D.E., Salzberg, S.L., Kraken: ultrafast metagenomics sequence classification using exact alignments. Genome Biol., 15, 2014, R46.
    • (2014) Genome Biol. , vol.15 , pp. R46
    • Wood, D.E.1    Salzberg, S.L.2
  • 18
    • 0025183708 scopus 로고
    • Basic local alignment search tool
    • 18 Altschul, S.F., et al. Basic local alignment search tool. J. Mol. Biol. 215 (1990), 403–410.
    • (1990) J. Mol. Biol. , vol.215 , pp. 403-410
    • Altschul, S.F.1
  • 19
    • 3242889975 scopus 로고    scopus 로고
    • Replacing suffix trees with enhanced suffix arrays
    • 19 Abouelhoda, M.I., et al. Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms 2 (2004), 53–86.
    • (2004) J. Discrete Algorithms , vol.2 , pp. 53-86
    • Abouelhoda, M.I.1
  • 20
    • 30544432152 scopus 로고    scopus 로고
    • Indexing compressed text
    • 20 Ferragina, P., Manzini, G., Indexing compressed text. J. ACM 52 (2005), 552–581.
    • (2005) J. ACM , vol.52 , pp. 552-581
    • Ferragina, P.1    Manzini, G.2
  • 21
    • 84897133117 scopus 로고    scopus 로고
    • Mosaik: a hash-based algorithm for accurate next generation sequencing short-read mapping
    • 21 Lee, W.P., et al. Mosaik: a hash-based algorithm for accurate next generation sequencing short-read mapping. PLoS One, 9, 2014, e90581.
    • (2014) PLoS One , vol.9 , pp. e90581
    • Lee, W.P.1
  • 22
    • 84930206092 scopus 로고    scopus 로고
    • A long fragment aligner called ALFALFA
    • 22 Vyverman, M., et al. A long fragment aligner called ALFALFA. BMC Bioinformatics, 16, 2015, 159.
    • (2015) BMC Bioinformatics , vol.16 , pp. 159
    • Vyverman, M.1
  • 23
    • 84926519013 scopus 로고    scopus 로고
    • HISAT: a fast spliced aligner with low memory requirements
    • 23 Kim, D., et al. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12 (2015), 357–360.
    • (2015) Nat. Methods , vol.12 , pp. 357-360
    • Kim, D.1
  • 24
    • 84871809302 scopus 로고    scopus 로고
    • STAR: ultrafast universal RNA-seq aligner
    • 24 Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 (2013), 15–21.
    • (2013) Bioinformatics , vol.29 , pp. 15-21
    • Dobin, A.1
  • 26
    • 12344332552 scopus 로고    scopus 로고
    • Reducing storage requirements for biological sequence comparison
    • 26 Roberts, M., et al. Reducing storage requirements for biological sequence comparison. Bioinformatics 20 (2004), 3363–3369.
    • (2004) Bioinformatics , vol.20 , pp. 3363-3369
    • Roberts, M.1
  • 27
    • 84978998700 scopus 로고    scopus 로고
    • Mash: fast genome and metagenome distance estimation using minhash
    • 27 Ondov, B.D., et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol., 17, 2016, 132.
    • (2016) Genome Biol. , vol.17 , pp. 132
    • Ondov, B.D.1
  • 28
    • 84930851165 scopus 로고    scopus 로고
    • Assembling large genomes with single-molecule sequencing and locality-sensitive hashing
    • 28 Berlin, K., et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33 (2015), 623–630.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 623-630
    • Berlin, K.1
  • 29
    • 85018177321 scopus 로고    scopus 로고
    • Privacy-preserving read mapping using locality sensitive hashing and secure kmer voting
    • 29 Popic, V., Batzoglou, S., Privacy-preserving read mapping using locality sensitive hashing and secure kmer voting. bioRxiv, 2016, 10.1101/046920doi.
    • (2016) bioRxiv
    • Popic, V.1    Batzoglou, S.2
  • 30
    • 84929626489 scopus 로고    scopus 로고
    • KMC 2: Fast and resource-frugal k-mer counting
    • 30 Deorowicz, S., et al. KMC 2: Fast and resource-frugal k-mer counting. Bioinformatics 31 (2015), 1569–1576.
    • (2015) Bioinformatics , vol.31 , pp. 1569-1576
    • Deorowicz, S.1
  • 31
    • 0014814325 scopus 로고
    • Space/time trade-offs in hash coding with allowable errors
    • 31 Bloom, B.H., Space/time trade-offs in hash coding with allowable errors. Comm. ACM 13 (1970), 422–426.
    • (1970) Comm. ACM , vol.13 , pp. 422-426
    • Bloom, B.H.1
  • 32
    • 84922696124 scopus 로고    scopus 로고
    • KmerStream: streaming algorithms for k-mer abundance estimation
    • 32 Melsted, P., Halldorsson, B.V., KmerStream: streaming algorithms for k-mer abundance estimation. Bioinformatics 30 (2014), 3541–3547.
    • (2014) Bioinformatics , vol.30 , pp. 3541-3547
    • Melsted, P.1    Halldorsson, B.V.2
  • 33
    • 84883784774 scopus 로고    scopus 로고
    • Space-efficient and exact de Bruijn graph representation based on a Bloom filter
    • 33 Chikhi, R., Rizk, G., Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms Mol. Biol, 8, 2013, 22.
    • (2013) Algorithms Mol. Biol , vol.8 , pp. 22
    • Chikhi, R.1    Rizk, G.2
  • 34
    • 84902437245 scopus 로고    scopus 로고
    • RNA-skim: a rapid method for RNA-seq quantification at transcript level
    • 34 Zhang, Z., Wang, W., RNA-skim: a rapid method for RNA-seq quantification at transcript level. Bioinformatics 30 (2014), i283–292.
    • (2014) Bioinformatics , vol.30 , pp. i283-292
    • Zhang, Z.1    Wang, W.2
  • 35
    • 81155158421 scopus 로고    scopus 로고
    • Efficient counting of k-mers in DNA sequences using a Bloom filter
    • 35 Melsted, P., Pritchard, J.K., Efficient counting of k-mers in DNA sequences using a Bloom filter. BMC Bioinformatics, 12, 2011, 333.
    • (2011) BMC Bioinformatics , vol.12 , pp. 333
    • Melsted, P.1    Pritchard, J.K.2
  • 36
    • 84925552713 scopus 로고    scopus 로고
    • BioBloom tools: fast, accurate and memory-efficient host species sequence screening using Bloom filters
    • 36 Chu, J., et al. BioBloom tools: fast, accurate and memory-efficient host species sequence screening using Bloom filters. Bioinformatics 30 (2014), 3402–3404.
    • (2014) Bioinformatics , vol.30 , pp. 3402-3404
    • Chu, J.1
  • 37
    • 84960920216 scopus 로고    scopus 로고
    • Fast search of thousands of short read sequencing experiments
    • 37 Solomon, B., Kingsford, C., Fast search of thousands of short read sequencing experiments. Nat. Biotechnol. 34 (2016), 300–302.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 300-302
    • Solomon, B.1    Kingsford, C.2
  • 38
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • 38 Smith, T.F., Waterman, M.S., Identification of common molecular subsequences. J. Mol. Biol. 147 (1981), 195–197.
    • (1981) J. Mol. Biol. , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 39
    • 0000541351 scopus 로고    scopus 로고
    • A fast bit-vector algorithm for approximate string matching based on dynamic programming
    • 39 Myers, G., A fast bit-vector algorithm for approximate string matching based on dynamic programming. J. ACM 46 (1999), 395–415.
    • (1999) J. ACM , vol.46 , pp. 395-415
    • Myers, G.1
  • 40
    • 84938998972 scopus 로고    scopus 로고
    • BitMapper: an efficient all-mapper based on bit-vector computing
    • 40 Cheng, H., et al. BitMapper: an efficient all-mapper based on bit-vector computing. BMC Bioinformatics, 16, 2015, 192.
    • (2015) BMC Bioinformatics , vol.16 , pp. 192
    • Cheng, H.1
  • 41
    • 84929610304 scopus 로고    scopus 로고
    • Shifted hamming distance: a fast and accurate SIMD-friendly filter to accelerate alignment verification in read mapping
    • 41 Xin, H., et al. Shifted hamming distance: a fast and accurate SIMD-friendly filter to accelerate alignment verification in read mapping. Bioinformatics 31 (2015), 1553–1560.
    • (2015) Bioinformatics , vol.31 , pp. 1553-1560
    • Xin, H.1
  • 42
    • 79952592810 scopus 로고    scopus 로고
    • A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
    • 42 Marcais, G., Kingsford, C., A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27 (2011), 764–770.
    • (2011) Bioinformatics , vol.27 , pp. 764-770
    • Marcais, G.1    Kingsford, C.2
  • 43
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • 43 Dean, J., Ghemawat, S., MapReduce: simplified data processing on large clusters. Comm. ACM 51 (2008), 107–113.
    • (2008) Comm. ACM , vol.51 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 45
    • 84991833935 scopus 로고    scopus 로고
    • Big data application in biomedical research and health care: a literature review
    • 45 Luo, J., Big data application in biomedical research and health care: a literature review. Biomed. Inform. Insights 8 (2016), 1–10.
    • (2016) Biomed. Inform. Insights , vol.8 , pp. 1-10
    • Luo, J.1
  • 46
    • 84950238895 scopus 로고    scopus 로고
    • BigBWA: approaching the Burrows–Wheeler aligner to big data technologies
    • 46 Abuin, J.M., et al. BigBWA: approaching the Burrows–Wheeler aligner to big data technologies. Bioinformatics 31 (2015), 4003–4005.
    • (2015) Bioinformatics , vol.31 , pp. 4003-4005
    • Abuin, J.M.1
  • 47
    • 84969651752 scopus 로고    scopus 로고
    • SparkBWA: speeding up the alignment of high-throughput DNA sequencing data
    • 47 Abuin, J.M., et al. SparkBWA: speeding up the alignment of high-throughput DNA sequencing data. PLoS One, 11, 2016, e0155461.
    • (2016) PLoS One , vol.11 , pp. e0155461
    • Abuin, J.M.1
  • 48
    • 77955343193 scopus 로고    scopus 로고
    • Cloud-scale RNA sequencing differential expression analysis with Myrna
    • 48 Langmead, B., et al. Cloud-scale RNA sequencing differential expression analysis with Myrna. Genome Biol., 11, 2010, R83.
    • (2010) Genome Biol. , vol.11 , pp. R83
    • Langmead, B.1
  • 49
    • 84878776102 scopus 로고    scopus 로고
    • A de-novo next generation genomic sequence assembler based on string graph and MapReduce Cloud computing framework
    • 49 Chang, Y.J., et al. A de-novo next generation genomic sequence assembler based on string graph and MapReduce Cloud computing framework. BMC Genomics, 13, 2012, S28.
    • (2012) BMC Genomics , vol.13 , pp. S28
    • Chang, Y.J.1
  • 50
    • 84893216742 scopus 로고    scopus 로고
    • CloudRS: an error correction algorithm of high-throughput sequencing data based on scalable framework
    • 50 Chien, C.C., et al. CloudRS: an error correction algorithm of high-throughput sequencing data based on scalable framework. Proc. IEEE Int. Conference Big Data 2013 (2013), 717–722.
    • (2013) Proc. IEEE Int. Conference Big Data , vol.2013 , pp. 717-722
    • Chien, C.C.1
  • 52
    • 84966540039 scopus 로고    scopus 로고
    • HipMer: an extreme-scale de novo genome assembler. Proc. Int. Conference for High Performance Computing, Networking
    • 52 Georganas, E., et al. HipMer: an extreme-scale de novo genome assembler. Proc. Int. Conference for High Performance Computing, Networking. Proc. Int. Conference for High Performance Computing, Networking, Storage and Analysis, 2015, 2015, 14.
    • (2015) Proc. Int. Conference for High Performance Computing, Networking, Storage and Analysis , vol.2015 , pp. 14
    • Georganas, E.1
  • 53
    • 84953889334 scopus 로고    scopus 로고
    • Parallel and scalable short-read alignment on multi-core clusters using UPC++
    • 53 Gonzalez-Dominguez, J., et al. Parallel and scalable short-read alignment on multi-core clusters using UPC++. PLoS One, 11, 2016, e0145490.
    • (2016) PLoS One , vol.11 , pp. e0145490
    • Gonzalez-Dominguez, J.1
  • 54
    • 85085251984 scopus 로고    scopus 로고
    • Spark: cluster computing with working sets
    • 54 Zaharia, M., et al. Spark: cluster computing with working sets. HotCloud, 2010, 2010, 10.
    • (2010) HotCloud , vol.2010 , pp. 10
    • Zaharia, M.1
  • 55
    • 84939199851 scopus 로고    scopus 로고
    • Big data analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf
    • 55 Reyes-Ortiz, J.L., et al. Big data analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf. INNS Conference on Big Data 2015, 2015, 121–130.
    • (2015) INNS Conference on Big Data 2015 , pp. 121-130
    • Reyes-Ortiz, J.L.1
  • 56
    • 84960941281 scopus 로고    scopus 로고
    • Heterospark: a heterogeneous CPU/GPU spark platform for machine learning algorithms
    • 56 Li, P., et al. Heterospark: a heterogeneous CPU/GPU spark platform for machine learning algorithms. 10th IEEE Int. Conf. on Networking, Architecture and Storage NAS 2015, 2015, 347–348.
    • (2015) 10th IEEE Int. Conf. on Networking, Architecture and Storage NAS 2015 , pp. 347-348
    • Li, P.1
  • 57
    • 78651550268 scopus 로고    scopus 로고
    • Scalable parallel programming with CUDA
    • 57 Nickolls, J., et al. Scalable parallel programming with CUDA. Queue 6 (2008), 40–53.
    • (2008) Queue , vol.6 , pp. 40-53
    • Nickolls, J.1
  • 58
    • 84926435661 scopus 로고    scopus 로고
    • Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space
    • 58 Wilton, R., et al. Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space. Peer J., 3, 2015, e808.
    • (2015) Peer J. , vol.3 , pp. e808
    • Wilton, R.1
  • 59
    • 84965097552 scopus 로고    scopus 로고
    • Highly sensitive and ultrafast read mapping for RNA-seq analysis
    • 59 Medina, I., et al. Highly sensitive and ultrafast read mapping for RNA-seq analysis. DNA Res. 23 (2016), 93–100.
    • (2016) DNA Res. , vol.23 , pp. 93-100
    • Medina, I.1
  • 60
    • 79953095545 scopus 로고    scopus 로고
    • DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI
    • 60 Liu, Y., et al. DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI. BMC Bioinformatics, 12, 2011, 85.
    • (2011) BMC Bioinformatics , vol.12 , pp. 85
    • Liu, Y.1
  • 61
    • 84985025974 scopus 로고    scopus 로고
    • Gerbil: a fast and memory-efficient k-mer counter with GPU-support
    • M. Frith Springer
    • 61 Erbert, M., et al. Gerbil: a fast and memory-efficient k-mer counter with GPU-support. Frith, M., (eds.) Algorithms in Bioinformatics, 9838, 2016, Springer, 150–161.
    • (2016) Algorithms in Bioinformatics , vol.9838 , pp. 150-161
    • Erbert, M.1
  • 62
    • 84929626808 scopus 로고    scopus 로고
    • Megahit: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph
    • 62 Li, D., et al. Megahit: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31 (2015), 1674–1676.
    • (2015) Bioinformatics , vol.31 , pp. 1674-1676
    • Li, D.1
  • 63
    • 84942570636 scopus 로고    scopus 로고
    • A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases
    • 63 Miller, N.A., et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med., 7, 2015, 100.
    • (2015) Genome Med. , vol.7 , pp. 100
    • Miller, N.A.1
  • 64
    • 84951993528 scopus 로고    scopus 로고
    • FHAST: FPGA-based acceleration of Bowtie in hardware: IEEE/ACM Trans
    • 64 Fernandez, E.B., et al. FHAST: FPGA-based acceleration of Bowtie in hardware: IEEE/ACM Trans. Computational Biology Bioinformatics 12 (2015), 973–981.
    • (2015) Computational Biology Bioinformatics , vol.12 , pp. 973-981
    • Fernandez, E.B.1
  • 67
    • 84962506782 scopus 로고    scopus 로고
    • Accelerated BLAST performance with Tera-BLAST: a comparison of FPGA versus GPU and CPU BLAST implementations
    • 67 TimeLogic, Accelerated BLAST performance with Tera-BLAST: a comparison of FPGA versus GPU and CPU BLAST implementations. 2013.
    • (2013)
    • TimeLogic1
  • 70
    • 84994589131 scopus 로고    scopus 로고
    • Lightassembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads
    • 70 El-Metwally, S., et al. Lightassembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads. Bioinformatics 32 (2016), 3215–3223.
    • (2016) Bioinformatics , vol.32 , pp. 3215-3223
    • El-Metwally, S.1
  • 71
    • 84907027898 scopus 로고    scopus 로고
    • Fiona: a parallel and automatic strategy for read error correction
    • 71 Schulz, M.H., et al. Fiona: a parallel and automatic strategy for read error correction. Bioinformatics 30 (2014), i356–363.
    • (2014) Bioinformatics , vol.30 , pp. i356-363
    • Schulz, M.H.1
  • 72
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • 72 Bray, N.L., et al. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34 (2016), 525–527.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 525-527
    • Bray, N.L.1
  • 73
    • 84947574515 scopus 로고    scopus 로고
    • Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data
    • 73 Allam, A., et al. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data. Bioinformatics 31 (2015), 3421–3428.
    • (2015) Bioinformatics , vol.31 , pp. 3421-3428
    • Allam, A.1
  • 74
    • 84878061466 scopus 로고    scopus 로고
    • Compareads: comparing huge metagenomic experiments
    • 74 Maillet, N., et al. Compareads: comparing huge metagenomic experiments. BMC Bioinformatics, 13, 2012, S10.
    • (2012) BMC Bioinformatics , vol.13 , pp. S10
    • Maillet, N.1
  • 75
    • 84890045371 scopus 로고    scopus 로고
    • BioPig: a Hadoop-based analytic toolkit for large-scale sequence data
    • 75 Nordberg, H., et al. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data. Bioinformatics 29 (2013), 3014–3019.
    • (2013) Bioinformatics , vol.29 , pp. 3014-3019
    • Nordberg, H.1
  • 76
    • 84874799482 scopus 로고    scopus 로고
    • Large-scale metagenomic sequence clustering on Map-Reduce clusters
    • 76 Yang, X., et al. Large-scale metagenomic sequence clustering on Map-Reduce clusters. J. Bioinform. Comput. Biol., 11, 2013, 1340001.
    • (2013) J. Bioinform. Comput. Biol. , vol.11 , pp. 1340001
    • Yang, X.1
  • 77
    • 85018159055 scopus 로고    scopus 로고
    • Scalable Rna Sequencing on Clusters of Multicore Processors
    • 77 Martinez, H., et al. Scalable Rna Sequencing on Clusters of Multicore Processors. IEEE Trustcom/BigDataSE/ISPA 2015190195.
    • Martinez, H.1
  • 78
    • 84991512041 scopus 로고    scopus 로고
    • BLESS 2: accurate, memory-efficient and fast error correction method
    • 78 Heo, Y., et al. BLESS 2: accurate, memory-efficient and fast error correction method. Bioinformatics 32 (2016), 2369–2371.
    • (2016) Bioinformatics , vol.32 , pp. 2369-2371
    • Heo, Y.1
  • 79
    • 84928981302 scopus 로고    scopus 로고
    • Sigma: Strain-level inference of genomes from metagenomic analysis for Biosurveillance
    • 79 Ahn, T.H., et al. Sigma: Strain-level inference of genomes from metagenomic analysis for Biosurveillance. Bioinformatics 31 (2015), 170–177.
    • (2015) Bioinformatics , vol.31 , pp. 170-177
    • Ahn, T.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.