메뉴 건너뛰기




Volumn 14, Issue 3, 2016, Pages 68-72

Machine Learning in Adversarial Settings

Author keywords

adversarial machine learning; machine learning; machine learning security; security; system security

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84973354134     PISSN: 15407993     EISSN: 15584046     Source Type: Journal    
DOI: 10.1109/MSP.2016.51     Document Type: Article
Times cited : (124)

References (8)
  • 4
    • 78049528115 scopus 로고    scopus 로고
    • Machine Learning in Adversarial Environments
    • P. Laskov and R. Lippmann, "Machine Learning in Adversarial Environments, " Machine Learning, vol. 81, no. 2, 2010, pp. 115-119.
    • (2010) Machine Learning , vol.81 , Issue.2 , pp. 115-119
    • Laskov, P.1    Lippmann, R.2
  • 5
    • 0027640858 scopus 로고
    • Learning in the Presence of Malicious Errors
    • M. Kearns and M. Li, "Learning in the Presence of Malicious Errors, " J. Computing, vol. 22, no. 4, 1993, pp. 807-837.
    • (1993) J. Computing , vol.22 , Issue.4 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 8
    • 84987680683 scopus 로고    scopus 로고
    • Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
    • to be published
    • N. Papernot et al., "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks, " to be published in Proc. 37th IEEE Symp. Security and Privacy, 2016.
    • (2016) Proc. 37th IEEE Symp. Security and Privacy
    • Papernot, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.