메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Online-Offline Extreme Learning Machine with Concept Drift Tracking for Time Series Data

Author keywords

[No Author keywords available]

Indexed keywords

DATA COMMUNICATION SYSTEMS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; SENSOR NETWORKS;

EID: 85011110660     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DICTA.2016.7797069     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 1
    • 85011022778 scopus 로고    scopus 로고
    • http://www.idc.com/getdoc.jsp?containerId=prUS40560115
  • 2
    • 84901228061 scopus 로고    scopus 로고
    • A survey on concept drift adaptation
    • Gama, J., et al. "A survey on concept drift adaptation." ACM Computing Surveys (CSUR) 46.4 (2014): 44
    • (2014) ACM Computing Surveys (CSUR) , vol.46 , Issue.4 , pp. 44
    • Gama, J.1
  • 3
    • 33845625540 scopus 로고    scopus 로고
    • Applying lazy learning algorithms to tackle concept drift in spam filtering
    • Fdez-Riverola, F., et al. "Applying lazy learning algorithms to tackle concept drift in spam filtering." Expert Systems with Applications 33.1 (2007): 36-48
    • (2007) Expert Systems with Applications , vol.33 , Issue.1 , pp. 36-48
    • Fdez-Riverola, F.1
  • 4
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G., and Miroslav K. "Learning in the presence of concept drift and hidden contexts." Machine learning 23.1 (1996): 69-101
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Miroslav, K.2
  • 5
    • 56349151977 scopus 로고    scopus 로고
    • Mining decision rules on data streams in the presence of concept drifts
    • Tsai, Cheng-Jung, Chien-I. Lee, and Wei-Pang Yang. "Mining decision rules on data streams in the presence of concept drifts." Expert Systems with Applications 36.2 (2009): 1164-1178
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 1164-1178
    • Tsai, C.-J.1    Lee, C.-I.2    Yang, W.-P.3
  • 8
    • 84891166135 scopus 로고    scopus 로고
    • Reacting to different types of concept drift: The accuracy updated ensemble algorithm
    • Brzezinski, Dariusz, and Jerzy Stefanowski. "Reacting to different types of concept drift: The accuracy updated ensemble algorithm." IEEE Transactions on Neural Networks and Learning Systems 25.1 (2014): 81-94
    • (2014) IEEE Transactions on Neural Networks and Learning Systems , vol.25 , Issue.1 , pp. 81-94
    • Dariusz, B.1    Stefanowski, J.2
  • 10
    • 85027917439 scopus 로고    scopus 로고
    • Graph ensemble boosting for imbalanced noisy graph stream classification
    • Pan, Shirui, et al. "Graph ensemble boosting for imbalanced noisy graph stream classification." IEEE transactions on cybernetics 45.5 (2015): 954-968
    • (2015) IEEE Transactions on Cybernetics , vol.45 , Issue.5 , pp. 954-968
    • Shirui, P.1
  • 12
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • Dec
    • Kolter, J. Zico, and Marcus A. Maloof. "Dynamic weighted majority: An ensemble method for drifting concepts." Journal of Machine Learning Research 8.Dec (2007): 2755-2790
    • (2007) Journal of Machine Learning Research 8 , pp. 2755-2790
    • Zico, K.J.1    Maloof, M.A.2
  • 13
    • 70449100647 scopus 로고    scopus 로고
    • Learning from time-changing data with adaptive windowing
    • Bifet, Albert, and Ricard Gavalda. "Learning from Time-Changing Data with Adaptive Windowing." SDM. Vol. 7. 2007
    • (2007) SDM , vol.7
    • Albert, B.1    Gavalda, R.2
  • 14
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, Thomas G. "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization." Machine learning 40.2 (2000): 139-157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich Thomas, G.1
  • 15
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • Elwell, Ryan, and Robi Polikar. "Incremental learning of concept drift in nonstationary environments." IEEE Transactions on Neural Networks 22.10 (2011): 1517-1531
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.10 , pp. 1517-1531
    • Ryan, E.1    Polikar, R.2
  • 16
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme learning machine theory and applications." Neurocomputing 70.1 (2006): 489-501
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 17
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang, Guang-Bin, and Lei Chen. "Convex incremental extreme learning machine." Neurocomputing 70.16 (2007): 3056-3062
    • (2007) Neurocomputing , vol.70 , Issue.16 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 18
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems[J]
    • Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering, 1960, 82(1): 35-45
    • (1960) Journal of Basic Engineering , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.