메뉴 건너뛰기




Volumn 36, Issue 2 PART 1, 2009, Pages 1164-1178

Mining decision rules on data streams in the presence of concept drifts

Author keywords

Classification; Concept drift; Data mining; Data stream; Decision tree

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLOCK AND DATA RECOVERY CIRCUITS (CDR CIRCUITS); DATA MINING; DECISION MAKING; DECISION TREES; PROBLEM SOLVING;

EID: 56349151977     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.11.034     Document Type: Article
Times cited : (25)

References (36)
  • 1
    • 56349095231 scopus 로고    scopus 로고
    • Agrawal, R., Ghosh, A., Imielinski, T., Iyer B., & Swami, A. (1992). An interval classifier for database mining applications. In Proceedings of the 18th conference on very large databases.
    • Agrawal, R., Ghosh, A., Imielinski, T., Iyer B., & Swami, A. (1992). An interval classifier for database mining applications. In Proceedings of the 18th conference on very large databases.
  • 2
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., and Niblett T. The CN2 induction algorithm. Machine Learning 3 4 (1989) 261-283
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 3
    • 56349095455 scopus 로고    scopus 로고
    • Cunningham, P., & Nowlan, N. (2003). A case-based approach to spam filtering that can track concept drift. In Proceedings of the ICCBR workshop on long-lived CBR systems.
    • Cunningham, P., & Nowlan, N. (2003). A case-based approach to spam filtering that can track concept drift. In Proceedings of the ICCBR workshop on long-lived CBR systems.
  • 4
    • 0034592938 scopus 로고    scopus 로고
    • Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the sixth international conference on knowledge discovery and data mining (pp. 71-80). Boston.
    • Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the sixth international conference on knowledge discovery and data mining (pp. 71-80). Boston.
  • 5
    • 33646390384 scopus 로고    scopus 로고
    • Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers
    • Fan H., and Ramamohanarao K. Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers. IEEE Transactions on Knowledge and Data Engineering 18 6 (2006) 721-737
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.6 , pp. 721-737
    • Fan, H.1    Ramamohanarao, K.2
  • 6
    • 12244286335 scopus 로고    scopus 로고
    • Fan, W. (2004). Systematic data selection to mine concept-drifting data streams. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 128-137).
    • Fan, W. (2004). Systematic data selection to mine concept-drifting data streams. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 128-137).
  • 7
    • 0242647897 scopus 로고    scopus 로고
    • Understanding the crucial differences between classification and discovery of association rules
    • Freitas A.A. Understanding the crucial differences between classification and discovery of association rules. SIGKDD Explorations 2 1 (2000) 65-69
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 65-69
    • Freitas, A.A.1
  • 8
    • 56349137681 scopus 로고    scopus 로고
    • Furnkranz, J., & Widmer, G. (1994). Incremental reduced error pruning. In Proceedings of the 11th international conference on machine learning (pp. 70-77). San Francisco.
    • Furnkranz, J., & Widmer, G. (1994). Incremental reduced error pruning. In Proceedings of the 11th international conference on machine learning (pp. 70-77). San Francisco.
  • 10
    • 0035789299 scopus 로고    scopus 로고
    • Hulten, G., Spencer, L., & Ddmingos, P. (2001). Mining time-changing data streams. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 97-106). San Francisco.
    • Hulten, G., Spencer, L., & Ddmingos, P. (2001). Mining time-changing data streams. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 97-106). San Francisco.
  • 11
    • 77952325551 scopus 로고    scopus 로고
    • Jin, R., & Agrawa, G. (2003). Efficient decision tree construction on streaming data. In Proceedings of the nineth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 571-576). Washington.
    • Jin, R., & Agrawa, G. (2003). Efficient decision tree construction on streaming data. In Proceedings of the nineth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 571-576). Washington.
  • 12
    • 56349113792 scopus 로고    scopus 로고
    • Klinkenberg, R. (2001). Using labeled and unlabeled data to learn drifting concepts. Workshop notes of the IJCAI-01 workshop on learning from temporal and spatial data (pp. 16-24). CA.
    • Klinkenberg, R. (2001). Using labeled and unlabeled data to learn drifting concepts. Workshop notes of the IJCAI-01 workshop on learning from temporal and spatial data (pp. 16-24). CA.
  • 13
    • 56349116741 scopus 로고    scopus 로고
    • Klinkenberg, R., & Renz, I. (1998). Adaptive information filtering: Learning in the presence of concept drifts. Workshop notes of the ICML-98 workshop on learning for text categorization (pp. 33-40). CA.
    • Klinkenberg, R., & Renz, I. (1998). Adaptive information filtering: Learning in the presence of concept drifts. Workshop notes of the ICML-98 workshop on learning for text categorization (pp. 33-40). CA.
  • 14
    • 78149292125 scopus 로고    scopus 로고
    • Kolter, J. Z., & Maloof, M. A. (2003). Dynamic weighted majority: A new ensemble method for tracking concept drift. In Proceedings of the third international IEEE conference on data mining (pp. 123-130). Melbourne, FL.
    • Kolter, J. Z., & Maloof, M. A. (2003). Dynamic weighted majority: A new ensemble method for tracking concept drift. In Proceedings of the third international IEEE conference on data mining (pp. 123-130). Melbourne, FL.
  • 15
    • 56349124720 scopus 로고    scopus 로고
    • Koychev, I. (2000). Gradual forgetting for adaptation to concept drift. In Proceedings of ECAI 2000 workshop current issues on spatio-temporal reasoning. Germany.
    • Koychev, I. (2000). Gradual forgetting for adaptation to concept drift. In Proceedings of ECAI 2000 workshop current issues on spatio-temporal reasoning. Germany.
  • 17
    • 56349090513 scopus 로고    scopus 로고
    • Lane, T., & Brodley, C. E. (1998). Approaches to online learning and concept drift for user identification in computer security. In Proceedings of the fourth international conference on knowledge discovery and data mining (pp. 259-263). New York.
    • Lane, T., & Brodley, C. E. (1998). Approaches to online learning and concept drift for user identification in computer security. In Proceedings of the fourth international conference on knowledge discovery and data mining (pp. 259-263). New York.
  • 20
    • 44049083520 scopus 로고    scopus 로고
    • Lee, C. I., Tsai, C. J., Yang, Y. R., & Yang, W. P. (2007). A top-down and greedy method for discretization of continuous attributes. In Proceedings of the fourth international conference on fuzzy systems and knowledge discovery. Haikou, China.
    • Lee, C. I., Tsai, C. J., Yang, Y. R., & Yang, W. P. (2007). A top-down and greedy method for discretization of continuous attributes. In Proceedings of the fourth international conference on fuzzy systems and knowledge discovery. Haikou, China.
  • 21
    • 44049106548 scopus 로고    scopus 로고
    • Lee, C. I., Tsai, C. J., Wu, J. H., & Yang, W. P. (2007). A decision tree-based approach to mining the rules of concept drift. In Proceedings of the fourth international conference on fuzzy systems and knowledge discovery. Haikou, China.
    • Lee, C. I., Tsai, C. J., Wu, J. H., & Yang, W. P. (2007). A decision tree-based approach to mining the rules of concept drift. In Proceedings of the fourth international conference on fuzzy systems and knowledge discovery. Haikou, China.
  • 22
    • 33745922861 scopus 로고    scopus 로고
    • Lee, C. I., Tsai, C. J., & Ku, C. W. (2006). An evolutionary and attribute-oriented ensemble classifier. In Proceedings of the international conference on computational science and its applications (pp. 1210-1218).
    • Lee, C. I., Tsai, C. J., & Ku, C. W. (2006). An evolutionary and attribute-oriented ensemble classifier. In Proceedings of the international conference on computational science and its applications (pp. 1210-1218).
  • 24
    • 0141592441 scopus 로고    scopus 로고
    • Maloof, M. (2003). Incremental rule learning with partial instance memory for changing concepts. In Proceedings of the international joint conference on neural networks. CA.
    • Maloof, M. (2003). Incremental rule learning with partial instance memory for changing concepts. In Proceedings of the international joint conference on neural networks. CA.
  • 25
    • 56349106971 scopus 로고    scopus 로고
    • Maloof, M.A., and Michalski, R.S. (2002). Incremental learning with partial instance memory. In Proceedings of the 13th international symposium on methodologies for intelligent systems. Lyon, France.
    • Maloof, M.A., and Michalski, R.S. (2002). Incremental learning with partial instance memory. In Proceedings of the 13th international symposium on methodologies for intelligent systems. Lyon, France.
  • 26
    • 56349138621 scopus 로고    scopus 로고
    • Menzies, T. (2003). Data mining for very busy people. In Proceedings of the international IEEE conference on data mining (pp. 22-29).
    • Menzies, T. (2003). Data mining for very busy people. In Proceedings of the international IEEE conference on data mining (pp. 22-29).
  • 27
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 29
    • 56349096382 scopus 로고    scopus 로고
    • Rastogi, R., & Shim, K. (1998). PUBLIC: a decision tree classifier that integrates building and pruning. In Proceedings of the 24th international conference on very large databases (pp. 404-415).
    • Rastogi, R., & Shim, K. (1998). PUBLIC: a decision tree classifier that integrates building and pruning. In Proceedings of the 24th international conference on very large databases (pp. 404-415).
  • 30
    • 0035788947 scopus 로고    scopus 로고
    • Street, W., & Kim, Y. (2001). A streaming ensemble algorithm for large-scale classification. In Proceedings of the seventh international conference on knowledge discovery and data mining (pp. 377-382). NY.
    • Street, W., & Kim, Y. (2001). A streaming ensemble algorithm for large-scale classification. In Proceedings of the seventh international conference on knowledge discovery and data mining (pp. 377-382). NY.
  • 32
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • Utgoff P.E. Incremental induction of decision trees. Machine Learning 4 2 (1989) 161-186
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 161-186
    • Utgoff, P.E.1
  • 33
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff P., Berkman N., and Clouse J. Decision tree induction based on efficient tree restructuring. Machine Learning 29 1 (1997) 5-44
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.1    Berkman, N.2    Clouse, J.3
  • 34
    • 77952415079 scopus 로고    scopus 로고
    • Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the nineth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 226-235). Washington, DC.
    • Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the nineth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 226-235). Washington, DC.
  • 35
    • 17744362879 scopus 로고    scopus 로고
    • On the complexity of finding emerging patterns
    • Wang L., Zhao H., Dong G., and Li J. On the complexity of finding emerging patterns. Theoretical Computer Science 335 1 (2006) 15-27
    • (2006) Theoretical Computer Science , vol.335 , Issue.1 , pp. 15-27
    • Wang, L.1    Zhao, H.2    Dong, G.3    Li, J.4
  • 36
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G., and Kubat M. Learning in the presence of concept drift and hidden contexts. Machine Learning 23 1 (1996) 69-101
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.