메뉴 건너뛰기




Volumn 33, Issue 1, 2007, Pages 36-48

Applying lazy learning algorithms to tackle concept drift in spam filtering

Author keywords

Anti spam filtering; Concept drift; IBR system; Model evaluation

Indexed keywords

COMPUTER SIMULATION; ELECTRONIC MAIL; LEARNING SYSTEMS; MATHEMATICAL MODELS; SYSTEMS ANALYSIS;

EID: 33845625540     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2006.04.011     Document Type: Article
Times cited : (115)

References (47)
  • 2
    • 33845615175 scopus 로고    scopus 로고
    • Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C. D., & Stamatopoulos, P. (2000). Learning to filter spam e-mail: a comparison of a Naïve Bayesian and a memory-based approach. In Proceedings of the workshop on machine learning and textual information access, 4th European conference on principles and practice of knowledge discovery in databases, Lyon, France (pp. 1-13).
  • 3
    • 33845616925 scopus 로고    scopus 로고
    • Androutsopoulos, I., Koutsias, J., Chandrinos, K. V., Paliouras, G. & Spyropoulos, C. (2000). An evaluation of Naïve Bayesian anti-spam filtering. In Proceedings of the workshop on machine learning in the new information age, in 11th European conference on machine learning, Barcelona, Spain (pp. 9-17).
  • 4
    • 33845604179 scopus 로고    scopus 로고
    • Androutsopoulos, I., Paliouras, G., & Michelakis, E. (2004). Learning to filter unsolicited commercial e-mail. Technical Report 2004/2, NCSR "Demokritos". Available from http://www.iit.demokritos.gr/skel/i-config/publications/.
  • 5
    • 0001345686 scopus 로고    scopus 로고
    • Context-sensitive learning methods for text categorization
    • Cohen W., and Singer Y. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems 17 2 (1999) 141-173
    • (1999) ACM Transactions on Information Systems , vol.17 , Issue.2 , pp. 141-173
    • Cohen, W.1    Singer, Y.2
  • 6
    • 33845678299 scopus 로고    scopus 로고
    • Cunningham, P., Nowlan, N., Delany, S. J., & Haahr, M. (2003). A case-based approach to spam filtering that can track concept drift. In Proceedings of the ICCBR'03 workshop on long-lived CBR systems, Trondheim, Norway (pp. 115-123).
  • 7
    • 33845680044 scopus 로고    scopus 로고
    • Daelemans, W., Jakub, Z., van der Sloot, K., & van den Bosch, A. (1999). TiMBL: tilburg memory based learner, version 2.0, Reference Guide. ILK, Computational Linguistics, Tilburg University. Available from http://ilk.kub.nl/~ilk/papers/ilk9901.ps.gz.
  • 8
    • 33845632593 scopus 로고    scopus 로고
    • Delany, S. J., Cunningham P., & Coyle, L. (2004). An assessment of case-based reasoning for spam filtering. In Proceedings of fifteenth Irish conference on artificial intelligence and cognitive science, Castlebar Town (pp. 9-18).
  • 9
    • 33845639788 scopus 로고    scopus 로고
    • Delany, S. J., Cunningham, P., Tsymbal, A., & Coyle, L. (2004). A case-based technique for tracking concept drift in spam filtering. In Proceedings of the 24th SGAI international conference on innovative techniques and applications of artificial intelligence, Cambridge, UK (pp. 3-16).
  • 10
    • 35048899801 scopus 로고    scopus 로고
    • Delany, S. J., & Cuningham, P. (2004). An analysis of case-base editing in a spam filtering system. In Proceedings of the 7th European conference on case-based reasoning, Madrid, Spain (pp. 128-141).
  • 11
    • 33845633486 scopus 로고    scopus 로고
    • Delany, S. J., Cuningham, P., & Tsymbal, A. (2005). A comparison of ensemble and case-base maintenance techniques for handling concept drift in spam filtering. Technical Report TCD-CS-2005-19, Computer Science Department, Trinity College Dublin.
  • 13
    • 33845668546 scopus 로고    scopus 로고
    • Fallows, D. (2004). Internet users and spam: what the attitudes and behavior of Internet users can tell us about fighting spam. In Proceedings of the first conference on email and anti-Spam (CEAS). Mountain View, CA.
  • 14
    • 33845652810 scopus 로고    scopus 로고
    • Fdez-Riverola, F., Iglesias, E. L., Díaz, F., Méndez, J. R., & Corchado, J. M. SpamHunting: an instance-based reasoning system for spam labelling and filtering. Decision Support Systems, in press.
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Annals of Statistics 28 2 (2000) 337-374
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0038336922 scopus 로고    scopus 로고
    • Gee, K. R. (2003). Using latent semantic indexing to filter spam. In Proceedings of the 2003 ACM symposium on applied computing, Melbourne, FL, USA (pp. 460-464).
  • 17
    • 33845605615 scopus 로고    scopus 로고
    • Categorización de Texto Sensible al Coste para el Filtrado de Contenidos Inapropiados en Internet
    • Gómez J.M., Puertas E., Carrero F., and De Buenaga M. Categorización de Texto Sensible al Coste para el Filtrado de Contenidos Inapropiados en Internet. Procesamiento del Lenguaje Natural 31 (2003) 13-20
    • (2003) Procesamiento del Lenguaje Natural , vol.31 , pp. 13-20
    • Gómez, J.M.1    Puertas, E.2    Carrero, F.3    De Buenaga, M.4
  • 18
    • 33845675954 scopus 로고    scopus 로고
    • Harries, M., & Horn, K. (1995). Detecting concept drift in financial time series prediction using symbolic machine learning. In Proceedings of the eighth Australian joint conference on artificial intelligence, Canberra, Australia (pp. 91-98).
  • 19
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimizing disagreements
    • Helmbold D.P., and Long P.M. Tracking drifting concepts by minimizing disagreements. Machine Learning 14 1 (1994) 27-45
    • (1994) Machine Learning , vol.14 , Issue.1 , pp. 27-45
    • Helmbold, D.P.1    Long, P.M.2
  • 20
    • 33845680872 scopus 로고    scopus 로고
    • Hidalgo, J. G., López, M. M., & Sanz, E. P. (2000). Combining text and heuristics for cost-sensitive spam filtering. In Proceedings of the 4th computational natural language learning workshop, Lisbon, Portugal (pp. 99-102).
  • 21
    • 33845611276 scopus 로고    scopus 로고
    • Joachims, T. (1997). A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In Proceedings of the 14th international conference on machine learning, Nashville, Tennessee, USA (pp. 143-151).
  • 22
    • 33845674769 scopus 로고    scopus 로고
    • John, G., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the 11th conference on uncertainty in artificial intelligence, Montreal, Quebec, Canada (pp. 338-345).
  • 23
    • 33845615174 scopus 로고    scopus 로고
    • Kelly, M. G., Hand, D. J., & Adams, N. M. (1999). The impact of changing populations on classifier performance. In Proceedings of the 5th international conference on knowledge discovery and data mining, New York (pp. 367-371).
  • 24
    • 85028802612 scopus 로고    scopus 로고
    • Kilander, F., & Jansson, C. G. (1993). COBBIT - a control procedure for COBWEB in the presence of concept drift. In Proceedings of the European conference on machine learning, Vienna (pp. 244-261).
  • 28
    • 33845640269 scopus 로고    scopus 로고
    • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on artificial intelligence, Montreal, Quebec, Canada (pp. 1137-1143).
  • 29
    • 0024896089 scopus 로고
    • Floating approximation in time-varying knowledge bases
    • Kubat M. Floating approximation in time-varying knowledge bases. Pattern Recognition Letters 10 (1989) 223-227
    • (1989) Pattern Recognition Letters , vol.10 , pp. 223-227
    • Kubat, M.1
  • 31
    • 35048891979 scopus 로고    scopus 로고
    • Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In Proceedings of the 5th international workshop on multiple classifier systems, Cagliari, Italy (pp. 1-15).
  • 34
    • 33845620526 scopus 로고    scopus 로고
    • Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to filtering junk e-mail. In Learning for text categorization - papers from the AAAI workshop, Technical Report WS-98-05 AAAI, Madison, Wisconsin (pp. 55-62).
  • 36
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: a boosting-based system for text categorization
    • Schapire R.E., and Singer Y. BoosTexter: a boosting-based system for text categorization. Machine Learning 39 2/3 (2000) 135-168
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 37
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer J.C., and Granger R.H. Incremental learning from noisy data. Machine Learning 1 (1986) 317-354
    • (1986) Machine Learning , vol.1 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 38
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys 34 1 (2002) 1-47
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 39
    • 33845674768 scopus 로고    scopus 로고
    • Smith, R. E. (1987). Diploid genetic algorithms for search in time varying environments. In Proceedings of the international conference on genetic algorithms and their applications, Tullahoma, Tennessee, US (pp. 202-206).
  • 40
    • 33845599694 scopus 로고    scopus 로고
    • Standley, K. O. (2003). Learning concept drift with a committee of decision trees. Technical Report UT-AI-TR-03-302, Computer Sciences Department, University of Texas.
  • 41
    • 33845606935 scopus 로고    scopus 로고
    • Syed, N. A., Liu, H., & Sung, K. K. (1999). Handling concept drifts in incremental learning with support vector machines. In Proceedings of the fifth international conference on knowledge discovery and data mining, San Diego (pp. 317-321).
  • 42
    • 33845667088 scopus 로고    scopus 로고
    • Taylor, C., Nakhaeizadeh, G., & Lanquillon, C. (1997). Structural change and classification. In Workshop notes of the ECML-97 workshop on dynamically changing domains: Theory revision and context dependence issues, Prague, Czech Republic (pp. 67-78).
  • 43
    • 84947759699 scopus 로고    scopus 로고
    • Ting, K. M. (1998). Inducing cost-sensitive trees via instance weighting. In Proceedings of the 2nd European symposium on principles of data mining and knowledge discovery, Nantes, France (pp. 139-147).
  • 44
    • 33845672800 scopus 로고    scopus 로고
    • Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College, Dublin.
  • 47
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G., and Kubat M. Learning in the presence of concept drift and hidden contexts. Machine Learning 23 1 (1996) 69-101
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.