-
2
-
-
33845615175
-
-
Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C. D., & Stamatopoulos, P. (2000). Learning to filter spam e-mail: a comparison of a Naïve Bayesian and a memory-based approach. In Proceedings of the workshop on machine learning and textual information access, 4th European conference on principles and practice of knowledge discovery in databases, Lyon, France (pp. 1-13).
-
-
-
-
3
-
-
33845616925
-
-
Androutsopoulos, I., Koutsias, J., Chandrinos, K. V., Paliouras, G. & Spyropoulos, C. (2000). An evaluation of Naïve Bayesian anti-spam filtering. In Proceedings of the workshop on machine learning in the new information age, in 11th European conference on machine learning, Barcelona, Spain (pp. 9-17).
-
-
-
-
4
-
-
33845604179
-
-
Androutsopoulos, I., Paliouras, G., & Michelakis, E. (2004). Learning to filter unsolicited commercial e-mail. Technical Report 2004/2, NCSR "Demokritos". Available from http://www.iit.demokritos.gr/skel/i-config/publications/.
-
-
-
-
5
-
-
0001345686
-
Context-sensitive learning methods for text categorization
-
Cohen W., and Singer Y. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems 17 2 (1999) 141-173
-
(1999)
ACM Transactions on Information Systems
, vol.17
, Issue.2
, pp. 141-173
-
-
Cohen, W.1
Singer, Y.2
-
6
-
-
33845678299
-
-
Cunningham, P., Nowlan, N., Delany, S. J., & Haahr, M. (2003). A case-based approach to spam filtering that can track concept drift. In Proceedings of the ICCBR'03 workshop on long-lived CBR systems, Trondheim, Norway (pp. 115-123).
-
-
-
-
7
-
-
33845680044
-
-
Daelemans, W., Jakub, Z., van der Sloot, K., & van den Bosch, A. (1999). TiMBL: tilburg memory based learner, version 2.0, Reference Guide. ILK, Computational Linguistics, Tilburg University. Available from http://ilk.kub.nl/~ilk/papers/ilk9901.ps.gz.
-
-
-
-
8
-
-
33845632593
-
-
Delany, S. J., Cunningham P., & Coyle, L. (2004). An assessment of case-based reasoning for spam filtering. In Proceedings of fifteenth Irish conference on artificial intelligence and cognitive science, Castlebar Town (pp. 9-18).
-
-
-
-
9
-
-
33845639788
-
-
Delany, S. J., Cunningham, P., Tsymbal, A., & Coyle, L. (2004). A case-based technique for tracking concept drift in spam filtering. In Proceedings of the 24th SGAI international conference on innovative techniques and applications of artificial intelligence, Cambridge, UK (pp. 3-16).
-
-
-
-
10
-
-
35048899801
-
-
Delany, S. J., & Cuningham, P. (2004). An analysis of case-base editing in a spam filtering system. In Proceedings of the 7th European conference on case-based reasoning, Madrid, Spain (pp. 128-141).
-
-
-
-
11
-
-
33845633486
-
-
Delany, S. J., Cuningham, P., & Tsymbal, A. (2005). A comparison of ensemble and case-base maintenance techniques for handling concept drift in spam filtering. Technical Report TCD-CS-2005-19, Computer Science Department, Trinity College Dublin.
-
-
-
-
13
-
-
33845668546
-
-
Fallows, D. (2004). Internet users and spam: what the attitudes and behavior of Internet users can tell us about fighting spam. In Proceedings of the first conference on email and anti-Spam (CEAS). Mountain View, CA.
-
-
-
-
14
-
-
33845652810
-
-
Fdez-Riverola, F., Iglesias, E. L., Díaz, F., Méndez, J. R., & Corchado, J. M. SpamHunting: an instance-based reasoning system for spam labelling and filtering. Decision Support Systems, in press.
-
-
-
-
15
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Annals of Statistics 28 2 (2000) 337-374
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
16
-
-
0038336922
-
-
Gee, K. R. (2003). Using latent semantic indexing to filter spam. In Proceedings of the 2003 ACM symposium on applied computing, Melbourne, FL, USA (pp. 460-464).
-
-
-
-
17
-
-
33845605615
-
Categorización de Texto Sensible al Coste para el Filtrado de Contenidos Inapropiados en Internet
-
Gómez J.M., Puertas E., Carrero F., and De Buenaga M. Categorización de Texto Sensible al Coste para el Filtrado de Contenidos Inapropiados en Internet. Procesamiento del Lenguaje Natural 31 (2003) 13-20
-
(2003)
Procesamiento del Lenguaje Natural
, vol.31
, pp. 13-20
-
-
Gómez, J.M.1
Puertas, E.2
Carrero, F.3
De Buenaga, M.4
-
18
-
-
33845675954
-
-
Harries, M., & Horn, K. (1995). Detecting concept drift in financial time series prediction using symbolic machine learning. In Proceedings of the eighth Australian joint conference on artificial intelligence, Canberra, Australia (pp. 91-98).
-
-
-
-
19
-
-
0002896413
-
Tracking drifting concepts by minimizing disagreements
-
Helmbold D.P., and Long P.M. Tracking drifting concepts by minimizing disagreements. Machine Learning 14 1 (1994) 27-45
-
(1994)
Machine Learning
, vol.14
, Issue.1
, pp. 27-45
-
-
Helmbold, D.P.1
Long, P.M.2
-
20
-
-
33845680872
-
-
Hidalgo, J. G., López, M. M., & Sanz, E. P. (2000). Combining text and heuristics for cost-sensitive spam filtering. In Proceedings of the 4th computational natural language learning workshop, Lisbon, Portugal (pp. 99-102).
-
-
-
-
21
-
-
33845611276
-
-
Joachims, T. (1997). A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In Proceedings of the 14th international conference on machine learning, Nashville, Tennessee, USA (pp. 143-151).
-
-
-
-
22
-
-
33845674769
-
-
John, G., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the 11th conference on uncertainty in artificial intelligence, Montreal, Quebec, Canada (pp. 338-345).
-
-
-
-
23
-
-
33845615174
-
-
Kelly, M. G., Hand, D. J., & Adams, N. M. (1999). The impact of changing populations on classifier performance. In Proceedings of the 5th international conference on knowledge discovery and data mining, New York (pp. 367-371).
-
-
-
-
24
-
-
85028802612
-
-
Kilander, F., & Jansson, C. G. (1993). COBBIT - a control procedure for COBWEB in the presence of concept drift. In Proceedings of the European conference on machine learning, Vienna (pp. 244-261).
-
-
-
-
28
-
-
33845640269
-
-
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on artificial intelligence, Montreal, Quebec, Canada (pp. 1137-1143).
-
-
-
-
29
-
-
0024896089
-
Floating approximation in time-varying knowledge bases
-
Kubat M. Floating approximation in time-varying knowledge bases. Pattern Recognition Letters 10 (1989) 223-227
-
(1989)
Pattern Recognition Letters
, vol.10
, pp. 223-227
-
-
Kubat, M.1
-
31
-
-
35048891979
-
-
Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In Proceedings of the 5th international workshop on multiple classifier systems, Cagliari, Italy (pp. 1-15).
-
-
-
-
34
-
-
33845620526
-
-
Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to filtering junk e-mail. In Learning for text categorization - papers from the AAAI workshop, Technical Report WS-98-05 AAAI, Madison, Wisconsin (pp. 55-62).
-
-
-
-
35
-
-
1542634596
-
A memory-based approach to anti-spam filtering for mailing lists
-
Sakkis G., Androutsopoulos I., Paliouras G., Karkaletsis V., Spyropoulos C., and Stamatopoulos P. A memory-based approach to anti-spam filtering for mailing lists. Information Retrieval 6 1 (2003) 49-73
-
(2003)
Information Retrieval
, vol.6
, Issue.1
, pp. 49-73
-
-
Sakkis, G.1
Androutsopoulos, I.2
Paliouras, G.3
Karkaletsis, V.4
Spyropoulos, C.5
Stamatopoulos, P.6
-
36
-
-
0033905095
-
BoosTexter: a boosting-based system for text categorization
-
Schapire R.E., and Singer Y. BoosTexter: a boosting-based system for text categorization. Machine Learning 39 2/3 (2000) 135-168
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
37
-
-
0010012318
-
Incremental learning from noisy data
-
Schlimmer J.C., and Granger R.H. Incremental learning from noisy data. Machine Learning 1 (1986) 317-354
-
(1986)
Machine Learning
, vol.1
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
38
-
-
0002442796
-
Machine learning in automated text categorization
-
Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys 34 1 (2002) 1-47
-
(2002)
ACM Computing Surveys
, vol.34
, Issue.1
, pp. 1-47
-
-
Sebastiani, F.1
-
39
-
-
33845674768
-
-
Smith, R. E. (1987). Diploid genetic algorithms for search in time varying environments. In Proceedings of the international conference on genetic algorithms and their applications, Tullahoma, Tennessee, US (pp. 202-206).
-
-
-
-
40
-
-
33845599694
-
-
Standley, K. O. (2003). Learning concept drift with a committee of decision trees. Technical Report UT-AI-TR-03-302, Computer Sciences Department, University of Texas.
-
-
-
-
41
-
-
33845606935
-
-
Syed, N. A., Liu, H., & Sung, K. K. (1999). Handling concept drifts in incremental learning with support vector machines. In Proceedings of the fifth international conference on knowledge discovery and data mining, San Diego (pp. 317-321).
-
-
-
-
42
-
-
33845667088
-
-
Taylor, C., Nakhaeizadeh, G., & Lanquillon, C. (1997). Structural change and classification. In Workshop notes of the ECML-97 workshop on dynamically changing domains: Theory revision and context dependence issues, Prague, Czech Republic (pp. 67-78).
-
-
-
-
43
-
-
84947759699
-
-
Ting, K. M. (1998). Inducing cost-sensitive trees via instance weighting. In Proceedings of the 2nd European symposium on principles of data mining and knowledge discovery, Nantes, France (pp. 139-147).
-
-
-
-
44
-
-
33845672800
-
-
Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College, Dublin.
-
-
-
-
47
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer G., and Kubat M. Learning in the presence of concept drift and hidden contexts. Machine Learning 23 1 (1996) 69-101
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|