메뉴 건너뛰기




Volumn , Issue , 2012, Pages 186-190

Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm

Author keywords

Abnormalities; Brain tumor; Fuzzy C means; K means; Magnetic Resonance Imaging (MRI); Pre processing; Thresholding

Indexed keywords

ABNORMALITIES; BRAIN TUMORS; FUZZY C MEAN; K-MEANS; PRE-PROCESSING; THRESHOLDING;

EID: 84863913436     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (184)

References (15)
  • 1
    • 77957925388 scopus 로고    scopus 로고
    • Systematic image processing for diagnosing brain tumors: A Type-II fuzzy expert system approach
    • M.H. Fazel Zarandia, M. Zarinbala, M. Izadi b(2011), "Systematic image processing for diagnosing brain tumors: A Type-II fuzzy expert system approach," Applied soft computing 11,285-294
    • (2011) Applied Soft Computing , vol.11 , pp. 285-294
    • Fazel Zarandia, M.H.1    Zarinbala, M.2    Izadi, M.3
  • 3
    • 78449258359 scopus 로고    scopus 로고
    • Segmentation of brain MR images for tumor extraction by combining K-means clustering and perona-malik anisotropic diffusion model
    • M. Masroor Ahmed & Dzulkifli Bin Mohammad(2010), "Segmentation of Brain MR [mages for Tumor Extraction by Combining Kmeans Clustering and Perona-Malik Anisotropic Diffusion Model," International Journal of Image Processing, Volume (2) : Issue(I) 27
    • (2010) International Journal of Image Processing , vol.2 , Issue.1 , pp. 27
    • Ahmed, M.M.1    Mohammad, D.B.2
  • 4
    • 80052107196 scopus 로고    scopus 로고
    • Image segmentation by improved watershed transformation in programming environment MATLAB
    • July-December
    • Manisha Bhagwatl, R.K.Krishna& V.E.Pise July-December 2010, "Image Segmentation by Improved Watershed Transformation in Programming Environment MATLAB," International Journal of Computer Science & Communication Vol. I, No. 2, pp. 171-174
    • (2010) International Journal of Computer Science & Communication , vol.1 , Issue.2 , pp. 171-174
    • Bhagwat, M.1    Krishna, R.K.2    Pise, V.E.3
  • 5
    • 84962289315 scopus 로고    scopus 로고
    • Fast image segmentation based on k-means clustering with histograms in hsv color space
    • Tse-Wei Chen, Yi-Ling Chen, Shao-Yi Chien (2010), "Fast Image Segmentation Based on K-Means Clustering with Histograms in HSV Color Space," Journal of Scientific Research ISSN I452-2I6X Vol. 44 No.2, pp.337-351
    • (2010) Journal of Scientific Research ISSN I452-2I6X , vol.44 , Issue.2 , pp. 337-351
    • Chen, T.-W.1    Chen, Y.-L.2    Chien, S.-Y.3
  • 7
    • 78650369192 scopus 로고    scopus 로고
    • An effective approach for segmentation of mri images:combining spatial Information with fuzzy C-means clustering
    • S. Zulaikha BeeviM, Mohamed Sathik(2010). "An Effective Approach for Segmentation of MRI Images:Combining Spatial Information with Fuzzy C-Means Clustering," European Journal of Scientific Research, ISSN I450-2I6X Vol. 41 No.3 pp.437-451
    • (2010) European Journal of Scientific Research, ISSN I450-2I6X , vol.41 , Issue.3 , pp. 437-451
    • Zulaikha Beevi, S.1    Sathik, M.M.2
  • 9
    • 84863958022 scopus 로고    scopus 로고
    • Image segmentation using k-means clustering, em and nonnalized cuts
    • july
    • A. Suman Tatiraju,july-2008, "Image Segmentation using k-means clustering, EM and Nonnalized Cuts," Symposium of Discrete Algorithms
    • (2008) Symposium of Discrete Algorithms
    • Tatiraju, A.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.