-
1
-
-
84870952001
-
Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production
-
1:CAS:528:DC%2BC38XhsFWhsb%2FJ
-
Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013;127:500-7.
-
(2013)
Bioresour Technol
, vol.127
, pp. 500-507
-
-
Singhania, R.R.1
Patel, A.K.2
Sukumaran, R.K.3
Larroche, C.4
Pandey, A.5
-
2
-
-
67649436135
-
Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose
-
Kristensen JB, Felby C, Jørgensen H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2009;2:11.
-
(2009)
Biotechnol Biofuels
, vol.2
, pp. 11
-
-
Kristensen, J.B.1
Felby, C.2
Jørgensen, H.3
-
3
-
-
85027931281
-
The role of product inhibition as a yield-determining factor in enzymatic high-solid hydrolysis of pretreated corn stover
-
1:CAS:528:DC%2BC2cXhtFOqur%2FM
-
Olsen SN, Borch K, Cruys-Bagger N, Westh P. The role of product inhibition as a yield-determining factor in enzymatic high-solid hydrolysis of pretreated corn stover. Appl Biochem Biotechnol. 2014;174:146-55.
-
(2014)
Appl Biochem Biotechnol
, vol.174
, pp. 146-155
-
-
Olsen, S.N.1
Borch, K.2
Cruys-Bagger, N.3
Westh, P.4
-
4
-
-
84881116511
-
Product inhibition of cellulases studied with 14C-labeled cellulose substrates
-
1:CAS:528:DC%2BC3sXhtlWgtLrO
-
Teugjas H, Väljamäe P. Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnol Biofuels. 2013;6:104.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 104
-
-
Teugjas, H.1
Väljamäe, P.2
-
5
-
-
84873708381
-
Product inhibition of five Hypocrea jecorina cellulases
-
1:CAS:528:DC%2BC3sXhsFCgurs%3D
-
Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sørensen TH, Anderson L, Borch K, Westh P. Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb Technol. 2013;52:163-9.
-
(2013)
Enzyme Microb Technol
, vol.52
, pp. 163-169
-
-
Murphy, L.1
Bohlin, C.2
Baumann, M.J.3
Olsen, S.N.4
Sørensen, T.H.5
Anderson, L.6
Borch, K.7
Westh, P.8
-
6
-
-
84880913078
-
Selecting β-glucosidases to support cellulases in cellulose saccharification
-
1:CAS:528:DC%2BC3sXhtlWgtLrN
-
Teugjas H, Väljamäe P. Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol Biofuels. 2013;6:105.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 105
-
-
Teugjas, H.1
Väljamäe, P.2
-
7
-
-
58149200943
-
The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics
-
1:CAS:528:DC%2BD1cXhsFejtL7K
-
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acid Res. 2009;37:D233-8.
-
(2009)
Nucleic Acid Res
, vol.37
, pp. D233-D238
-
-
Cantarel, B.L.1
Coutinho, P.M.2
Rancurel, C.3
Bernard, T.4
Lombard, V.5
Henrissat, B.6
-
8
-
-
17744362070
-
Transglucosidic reactions of the Aspergillus Niger family 3 β-glucosidase: Qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH
-
1:CAS:528:DC%2BD2MXis1Gks78%3D
-
Seidle HF, Huber RE. Transglucosidic reactions of the Aspergillus niger family 3 β-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch Biochem Biophys. 2005;436:254-64.
-
(2005)
Arch Biochem Biophys
, vol.436
, pp. 254-264
-
-
Seidle, H.F.1
Huber, R.E.2
-
9
-
-
84872351656
-
A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases
-
1:CAS:528:DC%2BC3sXjtlGntw%3D%3D
-
Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, Westh P. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol. 2013;97:159-69.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 159-169
-
-
Bohlin, C.1
Praestgaard, E.2
Baumann, M.J.3
Borch, K.4
Praestgaard, J.5
Monrad, R.N.6
Westh, P.7
-
10
-
-
84983353061
-
Two-way dynamics in β-glucosidase catalysis
-
1:CAS:528:DC%2BC28XhsVWmtr%2FL
-
Sawant S, Birhade S, Anil A, Gilbert H, Lali A. Two-way dynamics in β-glucosidase catalysis. J Mol Catal B: Enz. 2016;133:161-6.
-
(2016)
J Mol Catal B: Enz.
, vol.133
, pp. 161-166
-
-
Sawant, S.1
Birhade, S.2
Anil, A.3
Gilbert, H.4
Lali, A.5
-
11
-
-
0026443120
-
Cloning, characterization, nucleotide sequence of a gene encoding Microbispora BglB, a thermostable β-glucosidase expressed in Escherichia coli
-
1:CAS:528:DyaK3sXksVagtbg%3D
-
Wright RM, Yablonsky MD, Shalita ZP, Goyal AK, Eveleigh DE. Cloning, characterization, nucleotide sequence of a gene encoding Microbispora BglB, a thermostable β-glucosidase expressed in Escherichia coli. Appl Environ Microbiol. 1992;58:3455-65.
-
(1992)
Appl Environ Microbiol
, vol.58
, pp. 3455-3465
-
-
Wright, R.M.1
Yablonsky, M.D.2
Shalita, Z.P.3
Goyal, A.K.4
Eveleigh, D.E.5
-
12
-
-
0029100735
-
Properties of a novel glucose-enhanced β-glucosidase purified from Streptomyces sp. (ATCC 11238)
-
Perez-Pons JA, Rebordosa X, Querol E. Properties of a novel glucose-enhanced β-glucosidase purified from Streptomyces sp. (ATCC 11238). Biochim Biophys Acta. 1995;1251:145-53.
-
(1995)
Biochim Biophys Acta
, vol.1251
, pp. 145-153
-
-
Perez-Pons, J.A.1
Rebordosa, X.2
Querol, E.3
-
13
-
-
7644238142
-
β-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose
-
1:CAS:528:DC%2BD2cXptFOksLk%3D
-
Zanoelo FF, Polizeli MLTM, Terenzi HF, Jorge JA. β-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett. 2004;240:137-43.
-
(2004)
FEMS Microbiol Lett
, vol.240
, pp. 137-143
-
-
Zanoelo, F.F.1
Polizeli, M.L.T.M.2
Terenzi, H.F.3
Jorge, J.A.4
-
14
-
-
42049095517
-
Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi
-
1:CAS:528:DC%2BD1cXksVaktb4%3D
-
Sonia KG, Chadha BS, Badhan AK, Saini HS, Bhat MK. Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World J Microbiol Biotechnol. 2008;24:599-604.
-
(2008)
World J Microbiol Biotechnol
, vol.24
, pp. 599-604
-
-
Sonia, K.G.1
Chadha, B.S.2
Badhan, A.K.3
Saini, H.S.4
Bhat, M.K.5
-
15
-
-
77949292657
-
Furriel RPM. Purification and biochemical characterization of a glucose-stimulated β-d-glucosidase produced by Humicola grisea var. Thermoidea grown on sugarcane bagasse
-
1:CAS:528:DC%2BC3cXjtFWls7w%3D
-
Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA. Furriel RPM. Purification and biochemical characterization of a glucose-stimulated β-d-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol. 2010;48:53-62.
-
(2010)
J Microbiol.
, vol.48
, pp. 53-62
-
-
Nascimento, C.V.1
Souza, F.H.M.2
Masui, D.C.3
Leone, F.A.4
Peralta, R.M.5
Jorge, J.A.6
-
16
-
-
77957737285
-
Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance
-
Zemin F, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y. Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol. 2010;20:1351-8.
-
(2010)
J Microbiol Biotechnol
, vol.20
, pp. 1351-1358
-
-
Zemin, F.1
Fang, W.2
Liu, J.3
Hong, Y.4
Peng, H.5
Zhang, X.6
Sun, B.7
Xiao, Y.8
-
17
-
-
79952575277
-
Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae
-
1:CAS:528:DC%2BC3MXitlakt74%3D
-
Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol. 2011;89:1761-71.
-
(2011)
Appl Microbiol Biotechnol
, vol.89
, pp. 1761-1771
-
-
Uchima, C.A.1
Tokuda, G.2
Watanabe, H.3
Kitamoto, K.4
Arioka, M.5
-
18
-
-
84860852677
-
Thermoanaerobacterium thermosaccharolyticum β-glucosidase: A glucose-tolerant enzyme with high specific activity for cellobiose
-
1:CAS:528:DC%2BC38XhtVyku7bL
-
Pei J, Pang Q, Zhao L, Fan S, Shi H. Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels. 2012;5:31.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 31
-
-
Pei, J.1
Pang, Q.2
Zhao, L.3
Fan, S.4
Shi, H.5
-
19
-
-
84880056854
-
Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity
-
1:CAS:528:DC%2BC3sXpvVGmsrs%3D
-
Uchiyama T, Miyazaki K, Yaoi K. Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Biol Chem. 2013;288:18325-34.
-
(2013)
J Biol Chem
, vol.288
, pp. 18325-18334
-
-
Uchiyama, T.1
Miyazaki, K.2
Yaoi, K.3
-
20
-
-
84881104601
-
Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from marine Streptomycete
-
1:CAS:528:DC%2BC3sXjslehtrw%3D
-
Mai Z, Yang J, Tian X, Li J, Zhang S. Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from marine Streptomycete. Appl Biochem Biotechnol. 2013;169:1512-22.
-
(2013)
Appl Biochem Biotechnol
, vol.169
, pp. 1512-1522
-
-
Mai, Z.1
Yang, J.2
Tian, X.3
Li, J.4
Zhang, S.5
-
21
-
-
84879062717
-
Glucose and xylose stimulation of a β-glucosidase from the thermophilic fungus Humicola insolens: A kinetic and biophysical study
-
1:CAS:528:DC%2BC3sXhtVGrsb3J
-
Souza FHM, Inocentes RF, Ward RJ, Jorge JA, Furriel RPM. Glucose and xylose stimulation of a β-glucosidase from the thermophilic fungus Humicola insolens: a kinetic and biophysical study. J Mol Catal B: Enz. 2013;94:119-28.
-
(2013)
J Mol Catal B: Enz.
, vol.94
, pp. 119-128
-
-
Souza, F.H.M.1
Inocentes, R.F.2
Ward, R.J.3
Jorge, J.A.4
Furriel, R.P.M.5
-
22
-
-
84899870814
-
Gene cloning, expression and biochemical characterization of a glucose- and xylose-stimulated β-glucosidase from Humicola insolens RP86
-
1:CAS:528:DC%2BC2cXhtFWgurnI
-
Souza FHM, Meleiro LP, Machado CB, Zimbardi ALRL, Maldonado RF, Souza TACB, Masui DC, Murakami MT, Jorge JA, Ward RJ, Furriel RPM. Gene cloning, expression and biochemical characterization of a glucose- and xylose-stimulated β-glucosidase from Humicola insolens RP86. J Mol Catal B: Enz. 2014;106:1-10.
-
(2014)
J Mol Catal B: Enz.
, vol.106
, pp. 1-10
-
-
Souza, F.H.M.1
Meleiro, L.P.2
Machado, C.B.3
Zimbardi, A.L.R.L.4
Maldonado, R.F.5
Souza, T.A.C.B.6
Masui, D.C.7
Murakami, M.T.8
Jorge, J.A.9
Ward, R.J.10
Furriel, R.P.M.11
-
23
-
-
84931260664
-
Glucose-tolerant β-glucosidase retrieved from Kusaya gravy metagenome
-
Uchiyama T, Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved from Kusaya gravy metagenome. Front Microbiol. 2015;6:548.
-
(2015)
Front Microbiol.
, vol.6
, pp. 548
-
-
Uchiyama, T.1
Yaoi, K.2
Miyazaki, K.3
-
24
-
-
84956944870
-
Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration
-
Cao L-C, Wang Z-J, Ren G-H, Kong W, Li L, Xie W, Liu Y-H. Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol Biofuels. 2015;8:202.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 202
-
-
Cao, L.-C.1
Wang, Z.-J.2
Ren, G.-H.3
Kong, W.4
Li, L.5
Xie, W.6
Liu, Y.-H.7
-
25
-
-
84945456621
-
Overexpression and characterization of a glucose-tolerant β-glucosidase from T. Aotearoense with high specific activity for cellobiose
-
1:CAS:528:DC%2BC2MXotVOisL8%3D
-
Yang F, Yang X, Li Z, Du C, Wang J, Li S. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl Microbiol Biotechnol. 2015;99:8903-15.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 8903-8915
-
-
Yang, F.1
Yang, X.2
Li, Z.3
Du, C.4
Wang, J.5
Li, S.6
-
26
-
-
84948441858
-
A mechanism of glucose tolerance and stimulation of GH1 β-glucosidase
-
1:CAS:528:DC%2BC2MXhvFGjurvN
-
Yang Y, Zhang X, Yin Q, Fang W, Wang X, Zhang X, Xiao Y. A mechanism of glucose tolerance and stimulation of GH1 β-glucosidase. Sci Rep. 2015;5:17296.
-
(2015)
Sci Rep.
, vol.5
, pp. 17296
-
-
Yang, Y.1
Zhang, X.2
Yin, Q.3
Fang, W.4
Wang, X.5
Zhang, X.6
Xiao, Y.7
-
27
-
-
84925496790
-
Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization
-
1:CAS:528:DC%2BC2MXhs1artb0%3D
-
Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P. Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J Ind Microbiol Biotechnol. 2015;42:553-65.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 553-565
-
-
Ramani, G.1
Meera, B.2
Vanitha, C.3
Rajendhran, J.4
Gunasekaran, P.5
-
28
-
-
84938693360
-
Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential
-
1:CAS:528:DC%2BC2cXhtlCis7fN
-
Cota J, Correa TLR, Damasio ARL, Diogo JA, Hoffmam ZB, Garcia W, Oliveira LC, Prade RA, Squina FM. Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. New Biotechnol. 2015;32:13-20.
-
(2015)
New Biotechnol
, vol.32
, pp. 13-20
-
-
Cota, J.1
Correa, T.L.R.2
Damasio, A.R.L.3
Diogo, J.A.4
Hoffmam, Z.B.5
Garcia, W.6
Oliveira, L.C.7
Prade, R.A.8
Squina, F.M.9
-
29
-
-
84941651774
-
A Neurospora crassa β-glucosidase with potential for lignocellulose hydrolysis shows strong glucose tolerance and stimulation by glucose and xylose
-
1:CAS:528:DC%2BC2MXhsFShs7%2FJ
-
Meleiro LP, Salgado JCS, Maldonado RF, Alponti JS, Zimbardi ALRL, Jorge JA, Ward RJ, Furriel RPM. A Neurospora crassa β-glucosidase with potential for lignocellulose hydrolysis shows strong glucose tolerance and stimulation by glucose and xylose. J Mol Catal B: Enz. 2015;122:131-40.
-
(2015)
J Mol Catal B: Enz.
, vol.122
, pp. 131-140
-
-
Meleiro, L.P.1
Salgado, J.C.S.2
Maldonado, R.F.3
Alponti, J.S.4
Zimbardi, A.L.R.L.5
Jorge, J.A.6
Ward, R.J.7
Furriel, R.P.M.8
-
30
-
-
84976512619
-
Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase TdF2
-
1:CAS:528:DC%2BC28XntlSru7g%3D
-
Matsuzawa T, Jo T, Uchiyama T, Manninen JA, Arakawa T, Miyazaki K, Fushinobu S, Yaoi K. Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase TdF2. FEBS J. 2016;283:2340-53.
-
(2016)
FEBS J
, vol.283
, pp. 2340-2353
-
-
Matsuzawa, T.1
Jo, T.2
Uchiyama, T.3
Manninen, J.A.4
Arakawa, T.5
Miyazaki, K.6
Fushinobu, S.7
Yaoi, K.8
-
31
-
-
84983451652
-
Screening, identification, and characterization of a novel saccharide-stimulated β-glucosidase from a soil metagenomic library
-
10.1007/s00253-016-7803-2
-
Matsuzawa T, Yaoi K. Screening, identification, and characterization of a novel saccharide-stimulated β-glucosidase from a soil metagenomic library. Appl Microbiol Biotechnol. 2016. doi: 10.1007/s00253-016-7803-2.
-
(2016)
Appl Microbiol Biotechnol.
-
-
Matsuzawa, T.1
Yaoi, K.2
-
32
-
-
84963976814
-
Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions
-
Santos CA, Zanphorlin LM, Crucello A, Tonoli CCC, Ruller R, Horta MAC, Murakami MT, de Souza AP. Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. Biotechnol Biofuels. 2016;9:71.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 71
-
-
Santos, C.A.1
Zanphorlin, L.M.2
Crucello, A.3
Tonoli, C.C.C.4
Ruller, R.5
Horta, M.A.C.6
Murakami, M.T.7
De Souza, A.P.8
-
33
-
-
84983242880
-
Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1
-
Chan CS, Sin LL, Chan K-G, Shamsir MS, Manan FA, Sani RK, Goh KM. Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1. Biotechnol Biofuels. 2016;9:174.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 174
-
-
Chan, C.S.1
Sin, L.L.2
Chan, K.-G.3
Shamsir, M.S.4
Manan, F.A.5
Sani, R.K.6
Goh, K.M.7
-
34
-
-
84951864928
-
A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7
-
1:CAS:528:DC%2BC2MXhs1Orsb%2FN
-
Crespim E, Zanphorlin LM, de Souza FHM, Diogo JA, Gazolla AC, Machado CB, Figueiredo F, Sousa AS, Nobrega F, Pellizari VH, Murakami MT, Ruller R. A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7. Int J Biol Macromol. 2016;82:375-80.
-
(2016)
Int J Biol Macromol
, vol.82
, pp. 375-380
-
-
Crespim, E.1
Zanphorlin, L.M.2
De Souza, F.H.M.3
Diogo, J.A.4
Gazolla, A.C.5
Machado, C.B.6
Figueiredo, F.7
Sousa, A.S.8
Nobrega, F.9
Pellizari, V.H.10
Murakami, M.T.11
Ruller, R.12
-
35
-
-
84969849732
-
β-Glucosidase from the hyperthermophilic archaeon Thermococcus sp is a salt-tolerant enzyme that is stabilized by its reaction product glucose
-
1:CAS:528:DC%2BC28Xot1KitL8%3D
-
Sinha SK, Datta S. β-Glucosidase from the hyperthermophilic archaeon Thermococcus sp. is a salt-tolerant enzyme that is stabilized by its reaction product glucose. Appl Microbiol Biotechnol. 2016;100:8399-409.
-
(2016)
Appl Microbiol Biotechnol
, vol.100
, pp. 8399-8409
-
-
Sinha, S.K.1
Datta, S.2
-
36
-
-
84990858995
-
Expression of two novel β-glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and characterization of the heterologous protein products
-
1:CAS:528:DC%2BC28Xhs1eiu7nP
-
Colabardini AC, Valkonen M, Huuskonen A, Siika-aho M, Koivula A, Goldman GH, Saloheimo M. Expression of two novel β-glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and characterization of the heterologous protein products. Mol Biotechnol. 2016;58:821-31.
-
(2016)
Mol Biotechnol
, vol.58
, pp. 821-831
-
-
Colabardini, A.C.1
Valkonen, M.2
Huuskonen, A.3
Siika-Aho, M.4
Koivula, A.5
Goldman, G.H.6
Saloheimo, M.7
-
37
-
-
80052261669
-
Purification and biochemical characterization of an atypical β-glucosidase from Stachybotrys microspora
-
1:CAS:528:DC%2BC3MXhtV2ntb%2FE
-
Saibi W, Gargouri A. Purification and biochemical characterization of an atypical β-glucosidase from Stachybotrys microspora. J Mol Catal B: Enz. 2011;72:107-15.
-
(2011)
J Mol Catal B: Enz.
, vol.72
, pp. 107-115
-
-
Saibi, W.1
Gargouri, A.2
-
38
-
-
84958191042
-
Improvements in glucose sensitivity and stability of Trichoderma reesei β-glucosidase using site-directed mutagenesis
-
Guo B, Amano Y, Nozaki K. Improvements in glucose sensitivity and stability of Trichoderma reesei β-glucosidase using site-directed mutagenesis. PLoS ONE. 2016;11(1):e0147301.
-
(2016)
PLoS ONE
, vol.11
, Issue.1
, pp. e0147301
-
-
Guo, B.1
Amano, Y.2
Nozaki, K.3
-
39
-
-
84936933512
-
Beta glucosidase from Bacillus polymyxa is activated by glucose-6-phosphate
-
1:CAS:528:DC%2BC2MXhtV2itb7F
-
Weiss PHE, Alvares ACM, Gomes AA, Miletti LC, Skoronski E, da Silva GF, de Freitas SM, Magalhaes MLB. Beta glucosidase from Bacillus polymyxa is activated by glucose-6-phosphate. Arch Biochem Biophys. 2015;580:50-6.
-
(2015)
Arch Biochem Biophys
, vol.580
, pp. 50-56
-
-
Weiss, P.H.E.1
Alvares, A.C.M.2
Gomes, A.A.3
Miletti, L.C.4
Skoronski, E.5
Da Silva, G.F.6
De Freitas, S.M.7
Magalhaes, M.L.B.8
-
40
-
-
84902465913
-
Structural basis for glucose tolerance in GH1 β-glucosidases
-
de Giuseppe PO, Souza TACB, Souza FHM, Zanphorlin LM, Machado CB, Ward RJ, Jorge JA, Furriel RPM, Murakami MT. Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Cryst D. 2014;70:1631-9.
-
(2014)
Acta Cryst D.
, vol.70
, pp. 1631-1639
-
-
De Giuseppe, P.O.1
Souza, T.A.C.B.2
Souza, F.H.M.3
Zanphorlin, L.M.4
Machado, C.B.5
Ward, R.J.6
Jorge, J.A.7
Furriel, R.P.M.8
Murakami, M.T.9
-
43
-
-
0034850147
-
A structural basis of processivity
-
1:CAS:528:DC%2BD3MXmsFSgtLc%3D
-
Breyer AW, Matthews WB. A structural basis of processivity. Protein Sci. 2001;10:1699-711.
-
(2001)
Protein Sci
, vol.10
, pp. 1699-1711
-
-
Breyer, A.W.1
Matthews, W.B.2
-
44
-
-
84922932945
-
Fungal cellulases
-
1:CAS:528:DC%2BC2MXhsF2mur4%3D
-
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal cellulases. Chem Rev. 2015;115:1308-448.
-
(2015)
Chem Rev
, vol.115
, pp. 1308-1448
-
-
Payne, C.M.1
Knott, B.C.2
Mayes, H.B.3
Hansson, H.4
Himmel, M.E.5
Sandgren, M.6
Ståhlberg, J.7
Beckham, G.T.8
-
45
-
-
84892174650
-
The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies
-
1:CAS:528:DC%2BC3sXhvFWltbjM
-
Knott BC, Momeni MH, Crowley MF, Mackenzie LF, Götz AW, Sandgren M, Withers SG, Ståhlberg J, Beckham GT. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Soc. 2014;136:321-9.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 321-329
-
-
Knott, B.C.1
Momeni, M.H.2
Crowley, M.F.3
Mackenzie, L.F.4
Götz, A.W.5
Sandgren, M.6
Withers, S.G.7
Ståhlberg, J.8
Beckham, G.T.9
-
46
-
-
0031015902
-
Nomenclature for sugar-binding subsites in glycosyl hydrolases
-
1:CAS:528:DyaK2sXotFOnsQ%3D%3D
-
Davies GJ, Wilson KS, Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997;321:557-9.
-
(1997)
Biochem J
, vol.321
, pp. 557-559
-
-
Davies, G.J.1
Wilson, K.S.2
Henrissat, B.3
-
47
-
-
0024402815
-
Fungal cellulase systems: Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei
-
1:CAS:528:DyaL1MXlsV2gt7g%3D
-
Claeyssens M, van Tilbeurgh H, Tomme P, Wood TM, McRae SI. Fungal cellulase systems: comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem J. 1989;261:819-25.
-
(1989)
Biochem J
, vol.261
, pp. 819-825
-
-
Claeyssens, M.1
Van Tilbeurgh, H.2
Tomme, P.3
Wood, T.M.4
McRae, S.I.5
-
48
-
-
84902689475
-
Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity
-
1:CAS:528:DC%2BC2cXos1Wqu7o%3D
-
Knott BC, Crowley MF, Himmel ME, Ståhlberg J, Beckham GT. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity. J Am Chem Soc. 2014;136:8810-9.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 8810-8819
-
-
Knott, B.C.1
Crowley, M.F.2
Himmel, M.E.3
Ståhlberg, J.4
Beckham, G.T.5
-
49
-
-
33646270203
-
Molecular basis of substrate specificity in family 1 glycoside hydrolases
-
1:CAS:528:DC%2BD28XjtlKqt7k%3D
-
Marana SR. Molecular basis of substrate specificity in family 1 glycoside hydrolases. IUBMB Life. 2006;58:63-73.
-
(2006)
IUBMB Life
, vol.58
, pp. 63-73
-
-
Marana, S.R.1
-
50
-
-
0023187895
-
3H]cello-oligosaccharides
-
1:CAS:528:DyaL2sXmtFCis78%3D
-
3H]cello-oligosaccharides. Eur J Biochem. 1987;165:343-51.
-
(1987)
Eur J Biochem
, vol.165
, pp. 343-351
-
-
Chirico, W.J.1
Brown, R.D.2
-
51
-
-
0032079561
-
Substrate binding and catalytic mechanism of a barley β-d-glucosidase/(1,4)-β-d-glucan exohydrolase
-
1:CAS:528:DyaK1cXjtFGkurk%3D
-
Hrmova M, MacGregor EA, Biely P, Stewart RJ, Fincher GB. Substrate binding and catalytic mechanism of a barley β-d-glucosidase/(1,4)-β-d-glucan exohydrolase. J Biol Chem. 1998;273:11134-43.
-
(1998)
J Biol Chem
, vol.273
, pp. 11134-11143
-
-
Hrmova, M.1
MacGregor, E.A.2
Biely, P.3
Stewart, R.J.4
Fincher, G.B.5
-
52
-
-
0033388102
-
Basic subsite theory assumptions may not be applicable to hydrolysis of cellooligosaccharides by almond β-glucosidase
-
1:CAS:528:DC%2BD3cXhslygtw%3D%3D
-
Tanaka A, Nakagawa C, Kodaira K, Senoo K, Obata H. Basic subsite theory assumptions may not be applicable to hydrolysis of cellooligosaccharides by almond β-glucosidase. J Biosci Bioeng. 1999;88:664-6.
-
(1999)
J Biosci Bioeng
, vol.88
, pp. 664-666
-
-
Tanaka, A.1
Nakagawa, C.2
Kodaira, K.3
Senoo, K.4
Obata, H.5
-
54
-
-
1842866212
-
β-Glucosidase, exo-β-glucanase and pyridoxine transglucosylase activities of rice BGlu1
-
1:CAS:528:DC%2BD2cXisVyrsrY%3D
-
Opassiri R, Hua Y, Wara-Aswapati O, Akiyama T, Svasti J, Esen A, Cairns JRK. β-Glucosidase, exo-β-glucanase and pyridoxine transglucosylase activities of rice BGlu1. Biochem J. 2004;379:125-31.
-
(2004)
Biochem J
, vol.379
, pp. 125-131
-
-
Opassiri, R.1
Hua, Y.2
Wara-Aswapati, O.3
Akiyama, T.4
Svasti, J.5
Esen, A.6
Cairns, J.R.K.7
-
55
-
-
84928949306
-
Effects of active site cleft residues on oligosaccharide binding, hydrolysis, and glycosynthase activities of rice BGlu1 and its mutants
-
1:CAS:528:DC%2BC2cXitVamtbfK
-
Pengthaisong S, Cairns JRK. Effects of active site cleft residues on oligosaccharide binding, hydrolysis, and glycosynthase activities of rice BGlu1 and its mutants. Prot Sci. 2014;23:1738-52.
-
(2014)
Prot Sci.
, vol.23
, pp. 1738-1752
-
-
Pengthaisong, S.1
Cairns, J.R.K.2
-
56
-
-
84921898800
-
Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system
-
Baba Y, Sumitani J, Tani S, Kawaguchi T. Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system. AMB Express. 2015;5:3.
-
(2015)
AMB Express.
, vol.5
, pp. 3
-
-
Baba, Y.1
Sumitani, J.2
Tani, S.3
Kawaguchi, T.4
-
57
-
-
0014943898
-
Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme
-
1:CAS:528:DyaE3cXkvVCit70%3D
-
Hiromi K. Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme. Biochem Biophys Res Commun. 1970;40:1-6.
-
(1970)
Biochem Biophys Res Commun.
, vol.40
, pp. 1-6
-
-
Hiromi, K.1
-
58
-
-
0015240182
-
Subsite mapping of enzymes. Correlation of product patterns with Michaelis parameters and substrate-induced strain
-
1:CAS:528:DyaE3MXltVGnsr0%3D
-
Thoma JA, Rao GVK, Brothers C, Spradlin J, Li LH. Subsite mapping of enzymes. Correlation of product patterns with Michaelis parameters and substrate-induced strain. J Biol Chem. 1971;246:5621-35.
-
(1971)
J Biol Chem
, vol.246
, pp. 5621-5635
-
-
Thoma, J.A.1
Rao, G.V.K.2
Brothers, C.3
Spradlin, J.4
Li, L.H.5
-
59
-
-
0015921531
-
Subsite affinities of glucoamylase: Examination of the validity of the subsite theory
-
1:CAS:528:DyaE3sXktl2ltLs%3D
-
Hiromi K, Nitta Y, Numata C, Ono S. Subsite affinities of glucoamylase: examination of the validity of the subsite theory. Biochim Biophys Acta. 1973;302:362-75.
-
(1973)
Biochim Biophys Acta
, vol.302
, pp. 362-375
-
-
Hiromi, K.1
Nitta, Y.2
Numata, C.3
Ono, S.4
-
60
-
-
84929941359
-
Glycosynthesis in a waterworld: New insight into the molecular basis of transglycosylation in retaining glycoside hydrolases
-
1:CAS:528:DC%2BC2MXkvVOrsr0%3D
-
Bissaro B, Monsan P, Faure R, O'Donohue MJ. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J. 2015;467:17-35.
-
(2015)
Biochem J
, vol.467
, pp. 17-35
-
-
Bissaro, B.1
Monsan, P.2
Faure, R.3
O'Donohue, M.J.4
-
61
-
-
0032503519
-
Glycosynthases: Mutant glycosidases for oligosaccharide synthesis
-
1:CAS:528:DyaK1cXjtlWks7s%3D
-
Mackenzie LF, Wang Q, Warren RAJ, Withers SG. Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc. 1998;120:5583-4.
-
(1998)
J Am Chem Soc
, vol.120
, pp. 5583-5584
-
-
Mackenzie, L.F.1
Wang, Q.2
Warren, R.A.J.3
Withers, S.G.4
-
62
-
-
69049085645
-
Generating rate equations for complex enzyme systems by a computer-assisted systematic method
-
Qi F, Dash RK, Han Y, Beard DA. Generating rate equations for complex enzyme systems by a computer-assisted systematic method. BMC Bioinform. 2009;10:238.
-
(2009)
BMC Bioinform.
, vol.10
, pp. 238
-
-
Qi, F.1
Dash, R.K.2
Han, Y.3
Beard, D.A.4
-
64
-
-
81255135961
-
The 184th residue of β-glucosidase Bgl1B plays an important role in glucose tolerance
-
1:CAS:528:DC%2BC38XhsFyjtbY%3D
-
Liu J, Zhang X, Fang Z, Fang W, Peng H, Xiao Y. The 184th residue of β-glucosidase Bgl1B plays an important role in glucose tolerance. J Biosci Bioeng. 2011;112:447-50.
-
(2011)
J Biosci Bioeng
, vol.112
, pp. 447-450
-
-
Liu, J.1
Zhang, X.2
Fang, Z.3
Fang, W.4
Peng, H.5
Xiao, Y.6
-
65
-
-
84962820697
-
Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7
-
1:CAS:528:DC%2BC28Xlt1Gqsrg%3D
-
Zanphorlin LM, de Giuseppe PO, Honorato RV, Tonoli CCC, Fattori J, Crespim E, de Oliveira PSL, Ruller R, Murakami MT. Oligomerization as a strategy for cold adaptation: structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Sci Rep. 2016;6:23776.
-
(2016)
Sci Rep.
, vol.6
, pp. 23776
-
-
Zanphorlin, L.M.1
De Giuseppe, P.O.2
Honorato, R.V.3
Tonoli, C.C.C.4
Fattori, J.5
Crespim, E.6
De Oliveira, P.S.L.7
Ruller, R.8
Murakami, M.T.9
-
66
-
-
34547597634
-
Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give a new insights into the catalytic machinery of family 1 glycosidases
-
1:CAS:528:DC%2BD2sXovFeqsL8%3D
-
Isorna P, Polaina J, Latorre-Garcia L, Canada FJ, Gonzalez B, Sanz-Aparicio J. Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give a new insights into the catalytic machinery of family 1 glycosidases. J Mol Biol. 2007;371:1204-18.
-
(2007)
J Mol Biol
, vol.371
, pp. 1204-1218
-
-
Isorna, P.1
Polaina, J.2
Latorre-Garcia, L.3
Canada, F.J.4
Gonzalez, B.5
Sanz-Aparicio, J.6
-
67
-
-
78649906001
-
The structural basis of oligosaccharide binding by rice Bglu1 β-glucosidase
-
1:CAS:528:DC%2BC3cXhsFCqur%2FJ
-
Chuenchor W, Pengthaisong S, Robinson RC, Yuvaniyama J, Svasti J, Cairns JRK. The structural basis of oligosaccharide binding by rice Bglu1 β-glucosidase. J Struct Biol. 2011;173:169-79.
-
(2011)
J Struct Biol
, vol.173
, pp. 169-179
-
-
Chuenchor, W.1
Pengthaisong, S.2
Robinson, R.C.3
Yuvaniyama, J.4
Svasti, J.5
Cairns, J.R.K.6
-
68
-
-
78649905870
-
Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, Trichoderma reesei and termite Neotermes koshunensis
-
1:CAS:528:DC%2BC3cXhsFCqurzM
-
Jeng W-Y, Wang N-C, Lin M-H, Lin C-T, Liaw Y-C, Chang W-J, Liu C-I, Liang P-H, Wang AH-J. Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol. 2011;173:46-56.
-
(2011)
J Struct Biol
, vol.173
, pp. 46-56
-
-
Jeng, W.-Y.1
Wang, N.-C.2
Lin, M.-H.3
Lin, C.-T.4
Liaw, Y.-C.5
Chang, W.-J.6
Liu, C.-I.7
Liang, P.-H.8
Wang, A.H.-J.9
-
69
-
-
84858075955
-
Exchanging a single amino acid residue generates or weakens a +2 cellooligosaccharide binding subsite in rice β-glucosidases
-
1:CAS:528:DC%2BC38Xjt1Wnt7Y%3D
-
Sansenya S, Maneesan J, Cairns JRK. Exchanging a single amino acid residue generates or weakens a +2 cellooligosaccharide binding subsite in rice β-glucosidases. Carbohydr Res. 2012;351:130-3.
-
(2012)
Carbohydr Res
, vol.351
, pp. 130-133
-
-
Sansenya, S.1
Maneesan, J.2
Cairns, J.R.K.3
-
70
-
-
40849106389
-
Structutal insights into rice BGlu1 β-glucosidase oligosaccharide hydrolysis and transglycosylation
-
1:CAS:528:DC%2BD1cXjs1WhsLo%3D
-
Chuenchor W, Pengthaisong S, Robinson RC, Yuvaniyama J, Oonanant W, Bevan DR, Esen A, Chen C-J, Opassiri R, Svasti J, Cairns JRK. Structutal insights into rice BGlu1 β-glucosidase oligosaccharide hydrolysis and transglycosylation. J Mol Biol. 2008;377:1200-15.
-
(2008)
J Mol Biol
, vol.377
, pp. 1200-1215
-
-
Chuenchor, W.1
Pengthaisong, S.2
Robinson, R.C.3
Yuvaniyama, J.4
Oonanant, W.5
Bevan, D.R.6
Esen, A.7
Chen, C.-J.8
Opassiri, R.9
Svasti, J.10
Cairns, J.R.K.11
-
71
-
-
80054683331
-
Single mutations outside the active site affect the substrate specificity in a β-glucosidase
-
1:CAS:528:DC%2BC3MXhsFSjtLbP
-
Mendonca LMF, Marana SM. Single mutations outside the active site affect the substrate specificity in a β-glucosidase. Biochim Biophys Acta. 2011;1814:1616-23.
-
(2011)
Biochim Biophys Acta
, vol.1814
, pp. 1616-1623
-
-
Mendonca, L.M.F.1
Marana, S.M.2
-
72
-
-
84868600048
-
Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability
-
1:CAS:528:DC%2BC38Xhs1WqsL3P
-
Lee H-L, Chang C-K, Jeng W-Y, Wang AH-J, Liang P-H. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Prot Eng Des Select. 2012;25:733-40.
-
(2012)
Prot Eng des Select
, vol.25
, pp. 733-740
-
-
Lee, H.-L.1
Chang, C.-K.2
Jeng, W.-Y.3
Wang, A.H.-J.4
Liang, P.-H.5
-
74
-
-
0028848613
-
Identification of the acid/base catalyst in Agrobacterium faecalis β-glucosidase by kinetic analysis of mutants
-
1:CAS:528:DyaK2MXoslGhs74%3D
-
Wang Q, Trimbur D, Graham R, Warren RAJ, Withers SG. Identification of the acid/base catalyst in Agrobacterium faecalis β-glucosidase by kinetic analysis of mutants. Biochemistry. 1995;34:14554-62.
-
(1995)
Biochemistry
, vol.34
, pp. 14554-14562
-
-
Wang, Q.1
Trimbur, D.2
Graham, R.3
Warren, R.A.J.4
Withers, S.G.5
-
75
-
-
0032568560
-
Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry
-
1:CAS:528:DyaK1cXis12rsro%3D
-
Zechel DL, Konermann L, Withers SG, Douglas DJ. Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry. Biochemistry. 1998;37:7664-9.
-
(1998)
Biochemistry
, vol.37
, pp. 7664-7669
-
-
Zechel, D.L.1
Konermann, L.2
Withers, S.G.3
Douglas, D.J.4
-
76
-
-
0015010669
-
Kinetic studies by stopped-flow method of hydrolysis of o-nitrophenyl α-maltoside catalyzed by saccharifying α-amylase from Bacillus subtilis
-
1:CAS:528:DyaE3MXhtlGmurw%3D
-
Suetsugu N, Hiromi K, Ono S. Kinetic studies by stopped-flow method of hydrolysis of o-nitrophenyl α-maltoside catalyzed by saccharifying α-amylase from Bacillus subtilis. J Biochem. 1971;69:421-4.
-
(1971)
J Biochem
, vol.69
, pp. 421-424
-
-
Suetsugu, N.1
Hiromi, K.2
Ono, S.3
|