-
1
-
-
84973882641
-
Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation
-
C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. In ICCV, 2015
-
(2015)
ICCV
-
-
Bailer, C.1
Taetz, B.2
Stricker, D.3
-
2
-
-
84959231756
-
Deepedge: A multi-scale bifurcated deep network for top-down contour detection
-
G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-scale bifurcated deep network for top-down contour detection. In CVPR, 2015
-
(2015)
CVPR
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
3
-
-
33745891801
-
Actions as spacetime shapes
-
M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as spacetime shapes. In ICCV, pages 1395-1402, 2005
-
(2005)
ICCV
, pp. 1395-1402
-
-
Blank, M.1
Gorelick, L.2
Shechtman, E.3
Irani, M.4
Basri, R.5
-
4
-
-
79551562584
-
Large displacement optical flow: Descriptor matching in variational motion estimation
-
T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE TPAMI, 33(3):500-513, 2011
-
(2011)
IEEE TPAMI
, vol.33
, Issue.3
, pp. 500-513
-
-
Brox, T.1
Malik, J.2
-
5
-
-
84887338408
-
A naturalistic open source movie for optical flow evaluation
-
D. Butler, J.Wulff, G. Stanley, and M. Black. A naturalistic open source movie for optical flow evaluation. In CVPR, 2012
-
(2012)
CVPR
-
-
Butler, D.1
Wulff, J.2
Stanley, G.3
Black, M.4
-
7
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, 2013
-
(2013)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
8
-
-
0344983342
-
Recognizing action at a distance
-
A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In Proc. International Conference on Computer Vision, pages 726-733, 2003
-
(2003)
Proc. International Conference on Computer Vision
, pp. 726-733
-
-
Efros, A.1
Berg, A.2
Mori, G.3
Malik, J.4
-
9
-
-
84937943470
-
Depth map prediction from a single image using a multi-scale deep network
-
D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, 2014
-
(2014)
NIPS
-
-
Eigen, D.1
Puhrsch, C.2
Fergus, R.3
-
10
-
-
84973904859
-
Flownet: Learning optical flow with convolutional networks
-
P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional networks. In ICCV, 2015
-
(2015)
ICCV
-
-
Fischer, P.1
Dosovitskiy, A.2
Ilg, E.3
Häusser, P.4
Hazirbas, C.5
Golkov, V.6
Smagt, P.7
Cremers, D.8
Brox, T.9
-
12
-
-
52449115894
-
Searching for complex human activities with no visual examples
-
N. Ikizler and D. Forsyth. Searching for complex human activities with no visual examples. International Journal of Computer Vision, 80(3):337-357, 2008
-
(2008)
International Journal of Computer Vision
, vol.80
, Issue.3
, pp. 337-357
-
-
Ikizler, N.1
Forsyth, D.2
-
14
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014
-
(2014)
CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
16
-
-
0344551869
-
Space-time interest points
-
I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, 2003
-
(2003)
ICCV
-
-
Laptev, I.1
Lindeberg, T.2
-
17
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
18
-
-
84959228762
-
Beyond short snippets: Deep networks for video classification
-
J. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In CVPR, 2015
-
(2015)
CVPR
-
-
Ng, J.1
Hausknecht, M.2
Vijayanarasimhan, S.3
Vinyals, O.4
Monga, R.5
Toderici, G.6
-
21
-
-
84866718894
-
Action bank: A high-level representation of activity in video
-
S. Sadanand and J. Corso. Action bank: A high-level representation of activity in video. In CVPR, 2012
-
(2012)
CVPR
-
-
Sadanand, S.1
Corso, J.2
-
23
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
24
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014
-
(2014)
NIPS
-
-
Simonyan, K.1
Zisserman, A.2
-
25
-
-
85083953063
-
Very deep convolutional networks for largescale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for largescale image recognition. In ICLR, 2015
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
26
-
-
84904972001
-
UCF101: A dataset of 101 human action classes from videos in the wild
-
K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human action classes from videos in the wild. In CRCV-TR-12-01, 2012
-
(2012)
CRCV-TR-12-01
-
-
Soomro, K.1
Zamir, A.R.2
Shah, M.3
-
27
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
28
-
-
84973865953
-
Learning spatiotemporal features with 3d convolutional networks
-
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015
-
(2015)
ICCV
-
-
Tran, D.1
Bourdev, L.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
29
-
-
84876945537
-
Dense trajectories and motion boundary descriptors for action recognition
-
H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103(1):60-79, 2013
-
(2013)
IJCV
, vol.103
, Issue.1
, pp. 60-79
-
-
Wang, H.1
Kläser, A.2
Schmid, C.3
Liu, C.-L.4
-
31
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014
-
(2014)
ECCV
-
-
Zeiler, M.1
Fergus, R.2
-
32
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|