메뉴 건너뛰기




Volumn , Issue , 2016, Pages 402-409

Deep End2End Voxel2Voxel Prediction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FORECASTING; NETWORK ARCHITECTURE; PATTERN RECOGNITION; PROCESSING; SEMANTICS; VIDEO STREAMING;

EID: 85010192577     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2016.57     Document Type: Conference Paper
Times cited : (107)

References (32)
  • 1
    • 84973882641 scopus 로고    scopus 로고
    • Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation
    • C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. In ICCV, 2015
    • (2015) ICCV
    • Bailer, C.1    Taetz, B.2    Stricker, D.3
  • 2
    • 84959231756 scopus 로고    scopus 로고
    • Deepedge: A multi-scale bifurcated deep network for top-down contour detection
    • G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-scale bifurcated deep network for top-down contour detection. In CVPR, 2015
    • (2015) CVPR
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 4
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE TPAMI, 33(3):500-513, 2011
    • (2011) IEEE TPAMI , vol.33 , Issue.3 , pp. 500-513
    • Brox, T.1    Malik, J.2
  • 5
    • 84887338408 scopus 로고    scopus 로고
    • A naturalistic open source movie for optical flow evaluation
    • D. Butler, J.Wulff, G. Stanley, and M. Black. A naturalistic open source movie for optical flow evaluation. In CVPR, 2012
    • (2012) CVPR
    • Butler, D.1    Wulff, J.2    Stanley, G.3    Black, M.4
  • 9
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, 2014
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 12
    • 52449115894 scopus 로고    scopus 로고
    • Searching for complex human activities with no visual examples
    • N. Ikizler and D. Forsyth. Searching for complex human activities with no visual examples. International Journal of Computer Vision, 80(3):337-357, 2008
    • (2008) International Journal of Computer Vision , vol.80 , Issue.3 , pp. 337-357
    • Ikizler, N.1    Forsyth, D.2
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 16
    • 0344551869 scopus 로고    scopus 로고
    • Space-time interest points
    • I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, 2003
    • (2003) ICCV
    • Laptev, I.1    Lindeberg, T.2
  • 17
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 21
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • S. Sadanand and J. Corso. Action bank: A high-level representation of activity in video. In CVPR, 2012
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.2
  • 23
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 24
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014
    • (2014) NIPS
    • Simonyan, K.1    Zisserman, A.2
  • 25
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for largescale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for largescale image recognition. In ICLR, 2015
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 26
    • 84904972001 scopus 로고    scopus 로고
    • UCF101: A dataset of 101 human action classes from videos in the wild
    • K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human action classes from videos in the wild. In CRCV-TR-12-01, 2012
    • (2012) CRCV-TR-12-01
    • Soomro, K.1    Zamir, A.R.2    Shah, M.3
  • 28
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3d convolutional networks
    • D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015
    • (2015) ICCV
    • Tran, D.1    Bourdev, L.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 29
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103(1):60-79, 2013
    • (2013) IJCV , vol.103 , Issue.1 , pp. 60-79
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.-L.4
  • 31
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014
    • (2014) ECCV
    • Zeiler, M.1    Fergus, R.2
  • 32
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.