메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

Feature selection for better identification of subtypes of guillain-barré syndrome

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE EXTRACTION; STATISTICAL TESTS;

EID: 84930986694     PISSN: 1748670X     EISSN: 17486718     Source Type: Journal    
DOI: 10.1155/2014/432109     Document Type: Article
Times cited : (14)

References (50)
  • 1
    • 1842784961 scopus 로고    scopus 로고
    • Guillain-Barré syndrome
    • S. Kuwabara, "Guillain-Barré syndrome," Drugs, vol. 64, no. 6, pp. 597-610, 2004.
    • (2004) Drugs , vol.64 , Issue.6 , pp. 597-610
    • Kuwabara, S.1
  • 3
    • 84863212923 scopus 로고    scopus 로고
    • Electrodiagnostic criteria for Guillain-Barrè syndrome: A critical revision and the need for an update
    • A. Uncini and S. Kuwabara, "Electrodiagnostic criteria for Guillain-Barrè syndrome: A critical revision and the need for an update," Clinical Neurophysiology, vol. 123, no. 8, pp. 1487-1495, 2012.
    • (2012) Clinical Neurophysiology , vol.123 , Issue.8 , pp. 1487-1495
    • Uncini, A.1    Kuwabara, S.2
  • 6
    • 33750700775 scopus 로고    scopus 로고
    • Clinical and electrophysiological predictors of respiratory failure in Guillain-Barré syndrome: A prospective study
    • M.-C. Durand, R. Porcher, D. Orlikowski et al., "Clinical and electrophysiological predictors of respiratory failure in Guillain-Barré syndrome: A prospective study," The Lancet Neurology, vol. 5, no. 12, pp. 1021-1028, 2006.
    • (2006) The Lancet Neurology , vol.5 , Issue.12 , pp. 1021-1028
    • Durand, M.-C.1    Porcher, R.2    Orlikowski, D.3
  • 7
    • 84861704426 scopus 로고    scopus 로고
    • Clinical predictors of mechanical ventilation in Guillain-Barr syndrome
    • B. S. Paul, R. Bhatia, K. Prasad,M. V. Padma,M. Tripathi, and M. B. Singh, "Clinical predictors of mechanical ventilation in Guillain-Barr syndrome," Neurology India, vol. 60, no. 2, pp. 150-153, 2012.
    • (2012) Neurology India , vol.60 , Issue.2 , pp. 150-153
    • Paul, B.S.1    Bhatia, R.2    Prasad, K.3    Padma, M.V.4    Tripathi, M.5    Singh, M.B.6
  • 8
    • 77952921205 scopus 로고    scopus 로고
    • Prediction of respiratory insufficiency in Guillain-Barré syndrome
    • C. Walgaard, H. F. Lingsma, L. Ruts et al., "Prediction of respiratory insufficiency in Guillain-Barré syndrome," Annals of Neurology, vol. 67, no. 6, pp. 781-787, 2010.
    • (2010) Annals of Neurology , vol.67 , Issue.6 , pp. 781-787
    • Walgaard, C.1    Lingsma, H.F.2    Ruts, L.3
  • 9
    • 84893322899 scopus 로고    scopus 로고
    • Identification and analysis of industrial cluster structure
    • A. V. Babkin, T. J. Kudryavtseva, and S. A. Utkina, "Identification and analysis of industrial cluster structure," World Applied Sciences Journal, vol. 28, no. 10, pp. 1408-1413, 2013.
    • (2013) World Applied Sciences Journal , vol.28 , Issue.10 , pp. 1408-1413
    • Babkin, A.V.1    Kudryavtseva, T.J.2    Utkina, S.A.3
  • 11
    • 77953389042 scopus 로고    scopus 로고
    • Clinical COPD phenotypes: A novel approach using principal component and cluster analyses
    • P. R. Burgel, J. L. Paillasseur, D. Caillaud et al., "Clinical COPD phenotypes: A novel approach using principal component and cluster analyses," European Respiratory Journal, vol. 36, no. 3, pp. 531-539, 2010.
    • (2010) European Respiratory Journal , vol.36 , Issue.3 , pp. 531-539
    • Burgel, P.R.1    Paillasseur, J.L.2    Caillaud, D.3
  • 12
    • 34547914826 scopus 로고    scopus 로고
    • Bayesian clustering with autoclass explicitly recognizes uncertainties in landscape classification
    • J. Angus Webb, N. R. Bond, S. R. Wealands, R. M. Nally, G. P. Quinn, and P. A. Vesk, "Bayesian clustering with autoclass explicitly recognizes uncertainties in landscape classification," Ecography, vol. 30, no. 4, pp. 526-536, 2007.
    • (2007) Ecography , vol.30 , Issue.4 , pp. 526-536
    • Angus Webb, J.1    Bond, N.R.2    Wealands, S.R.3    Nally, R.M.4    Quinn, G.P.5    Vesk, P.A.6
  • 13
    • 84942747959 scopus 로고    scopus 로고
    • Feature selection for clustering
    • T. Terano, H. Liu, and A. L. P. Chen, Eds. of Lecture Notes in Computer Science Springer, Berlin, Germany
    • M.DashandH.Liu, "Feature selection for clustering," inKnowledge Discovery and DataMining. Current Issues and New Applications, T. Terano, H. Liu, and A. L. P. Chen, Eds., vol. 1805 of Lecture Notes in Computer Science, pp. 110-121, Springer, Berlin, Germany, 2000.
    • (2000) Knowledge Discovery and DataMining. Current Issues and New Applications , vol.1805 , pp. 110-121
    • Dashand, M.1    Liu, H.2
  • 15
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Z. Zheng, X. Wu, and R. Srihari, "Feature selection for text categorization on imbalanced data," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 80-89, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 16
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani, "Machine learning in automated text categorization," ACM Computing Surveys, vol. 34, no. 1, pp. 1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 17
    • 24144432307 scopus 로고    scopus 로고
    • Data mining feature selection for credit scoring models
    • Y. Liu and M. Schumann, "Data mining feature selection for credit scoring models," Journal of the Operational Research Society, vol. 56, no. 9, pp. 1099-1108, 2005.
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1099-1108
    • Liu, Y.1    Schumann, M.2
  • 18
  • 19
    • 84869825457 scopus 로고    scopus 로고
    • Application of symmetric uncertainty and mutual information to dimensionality reduction and classification of hyperspectral images
    • E. Sarhrouni, A. Hammouch, and D. Aboutajdine, "Application of symmetric uncertainty and mutual information to dimensionality reduction and classification of hyperspectral images," International Journal of Engineering and Technology, vol. 4, no. 5, pp. 268-276, 2012.
    • (2012) International Journal of Engineering and Technology , vol.4 , Issue.5 , pp. 268-276
    • Sarhrouni, E.1    Hammouch, A.2    Aboutajdine, D.3
  • 20
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 22
    • 17744402661 scopus 로고    scopus 로고
    • Feature Subset Selection by Bayesian network-based optimization
    • I. Inza, P. Larrañaga, R. Etxeberria, and B. Sierra, "Feature Subset Selection by Bayesian network-based optimization," Artificial Intelligence, vol. 123, no. 1-2, pp. 157-184, 2000.
    • (2000) Artificial Intelligence , vol.123 , Issue.1-2 , pp. 157-184
    • Inza, I.1    Larrañaga, P.2    Etxeberria, R.3    Sierra, B.4
  • 24
    • 70549105005 scopus 로고    scopus 로고
    • Image categorization using ESFS: A new embedded feature selection method based on SFS
    • J. Blanc-Talon, W. Philips, D. Popescu, and P. Scheunders, Eds. of Lecture Notes in Computer Science
    • H. Fu, Z. Xiao, E. Dellandrea, W. Dou, and L. Chen, "Image categorization using ESFS: A new embedded feature selection method based on SFS," in Advanced Concepts for Intelligent Vision Systems, J. Blanc-Talon, W. Philips, D. Popescu, and P. Scheunders, Eds., vol. 5807 of Lecture Notes in Computer Science, pp. 288-299, 2009.
    • (2009) Advanced Concepts for Intelligent Vision Systems , vol.5807 , pp. 288-299
    • Fu, H.1    Xiao, Z.2    Dellandrea, E.3    Dou, W.4    Chen, L.5
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 27
    • 79957944585 scopus 로고    scopus 로고
    • Hybrid (Generalization-Correlation)method for feature selection in high dimensional DNA microarray prediction problems
    • I. Cabestany, I. Rojas, and G. Joya, Eds. of Lecture Notes in Computer Science
    • Y. Couce, L. Franco, D. Urda, J. L. Subirats, and J. M. Jerez, "Hybrid (Generalization-Correlation)method for feature selection in high dimensional DNA microarray prediction problems," in Advances in Computational Intelligence, I. Cabestany, I. Rojas, and G. Joya, Eds., vol. 6692 of Lecture Notes in Computer Science, pp. 202-209, 2011.
    • (2011) Advances in Computational Intelligence , vol.6692 , pp. 202-209
    • Couce, Y.1    Franco, L.2    Urda, D.3    Subirats, J.L.4    Jerez, J.M.5
  • 28
    • 33751119481 scopus 로고    scopus 로고
    • Hybrid feature selection for modeling intrusion detection systems
    • N. Pal, N. Kasabov, R. Mudi, S. Pal, and S.Parui,Eds. of Lecture Notes in Computer Science
    • S. Chebrolu, A. Abraham, and J. P. Thomas, "Hybrid feature selection for modeling intrusion detection systems," in Neural Information Processing, N. Pal, N. Kasabov, R. Mudi, S. Pal, and S.Parui,Eds., vol. 3316 of Lecture Notes in Computer Science, pp. 1020-1025, 2004.
    • (2004) Neural Information Processing , vol.3316 , pp. 1020-1025
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 29
    • 84902177692 scopus 로고    scopus 로고
    • Quad-PRE: A hybridmethod to predict protein quaternary structure attributes
    • Y. Shen, X.Qiu, C. Zhang et al., "Quad-PRE: A hybridmethod to predict protein quaternary structure attributes," Computational and Mathematical Methods in Medicine, vol. 2014, Article ID 715494, 9 pages, 2014.
    • (2014) Computational and Mathematical Methods in Medicine , vol.2014
    • Shen, Y.1    Qiu, X.2    Zhang, C.3
  • 33
    • 84893823067 scopus 로고    scopus 로고
    • Active semisupervised clustering algorithmwith label propagation for imbalanced and multidensity datasets
    • M. Leng, G. Cheng, J. Wang et al., "Active semisupervised clustering algorithmwith label propagation for imbalanced and multidensity datasets," Mathematical Problems in Engineering, vol. 2013, Article ID641927, 10 pages, 2013.
    • (2013) Mathematical Problems in Engineering , vol.2013
    • Leng, M.1    Cheng, G.2    Wang, J.3
  • 34
    • 84883143015 scopus 로고    scopus 로고
    • Semisupervised clustering for networks based on fast affinity propagation
    • M. Zhu, F. Meng, and Y. Zhou, "Semisupervised clustering for networks based on fast affinity propagation," Mathematical Problems in Engineering, vol. 2013, Article ID 385265, 13 pages, 2013.
    • (2013) Mathematical Problems in Engineering , vol.2013
    • Zhu, M.1    Meng, F.2    Zhou, Y.3
  • 36
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • H. Liu, J. Li, and L. Wong, "A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns," Genome Informatics, vol. 13, pp. 51-60, 2002.
    • (2002) Genome Informatics , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 40
    • 0001330098 scopus 로고
    • A general coefficient of similarity and some of its properties
    • J. Gower, "A general coefficient of similarity and some of its properties," Biometrics, vol. 27, no. 4, pp. 857-871, 1971.
    • (1971) Biometrics , vol.27 , Issue.4 , pp. 857-871
    • Gower, J.1
  • 44
    • 78049362784 scopus 로고    scopus 로고
    • Background knowledge integration in clustering using purity indexes
    • Y. Bi andM. A.Williams, Eds. of LectureNotes in Computer Science
    • G. Forestier, C. Wemmert, and P. Ganarski, "Background knowledge integration in clustering using purity indexes," in Knowledge Science, Engineering and Management, Y. Bi andM. A.Williams, Eds., vol. 6291 of LectureNotes in Computer Science, pp. 28-38, 2010.
    • (2010) Knowledge Science, Engineering and Management , vol.6291 , pp. 28-38
    • Forestier, G.1    Wemmert, C.2    Ganarski, P.3
  • 46
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • August
    • L. Yu and H. Liu, "Feature selection for high-dimensional data: A fast correlation-based filter solution," in Proceedings of the 20th International Conference on Machine Learning, pp. 856-863, August 2003.
    • (2003) Proceedings of the 20th International Conference on Machine Learning , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 48
    • 84893863229 scopus 로고    scopus 로고
    • Naive bayes-guided bat algorithm for feature selection
    • A. M. Taha, A.Mustapha, and S. D. Chen, "Naive bayes-guided bat algorithm for feature selection,"TheScientificWorld Journal, vol. 2013, Article ID 325973, 9 pages, 2013.
    • (2013) TheScientificWorld Journal , vol.2013
    • Taha, A.M.1    Mustapha, A.2    Chen, S.D.3
  • 49
    • 84883204011 scopus 로고    scopus 로고
    • Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
    • M. S. Uzer, N. Yilmaz, and O. Inan, "Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification," The Scientific World Journal, vol. 2013, Article ID 419187, 10 pages, 2013.
    • (2013) The Scientific World Journal , vol.2013
    • Uzer, M.S.1    Yilmaz, N.2    Inan, O.3
  • 50
    • 84893853199 scopus 로고    scopus 로고
    • A semisupervised feature selection with support vector machine
    • K. Dai, H. Yu, and Q. Li, "A semisupervised feature selection with support vector machine," Journal of Applied Mathematics, vol. 2013, Article ID416320, 11 pages, 2013.
    • (2013) Journal of Applied Mathematics , vol.2013
    • Dai, K.1    Yu, H.2    Li, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.