-
1
-
-
2542574141
-
The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society
-
1 Gest, H., The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society. Notes Rec. R. Soc. Lond. 58 (2004), 187–201.
-
(2004)
Notes Rec. R. Soc. Lond.
, vol.58
, pp. 187-201
-
-
Gest, H.1
-
2
-
-
37349040358
-
Interspecies interactions within oral microbial communities
-
2 Kuramitsu, H.K., Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 71 (2007), 653–670.
-
(2007)
Microbiol. Mol. Biol. Rev.
, vol.71
, pp. 653-670
-
-
Kuramitsu, H.K.1
-
3
-
-
0033757759
-
Oral microbial communities: biofilms, interactions, and genetic systems
-
3 Kolenbrander, P.E., Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 54 (2000), 413–437.
-
(2000)
Annu. Rev. Microbiol.
, vol.54
, pp. 413-437
-
-
Kolenbrander, P.E.1
-
4
-
-
77953620116
-
Oral multispecies biofilm development and the key role of cell–cell distance
-
4 Kolenbrander, P.E., et al. Oral multispecies biofilm development and the key role of cell–cell distance. Nat. Rev. Microbiol. 8 (2010), 471–480.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 471-480
-
-
Kolenbrander, P.E.1
-
5
-
-
84958211859
-
Temporal stability of the salivary microbiota in oral health
-
5 Belstrom, D., Temporal stability of the salivary microbiota in oral health. PLoS One, 11, 2016, e0147472.
-
(2016)
PLoS One
, vol.11
, pp. e0147472
-
-
Belstrom, D.1
-
6
-
-
84894313991
-
The social structure of microbial community involved in colonization resistance
-
6 He, X., The social structure of microbial community involved in colonization resistance. ISME J. 8 (2014), 564–574.
-
(2014)
ISME J.
, vol.8
, pp. 564-574
-
-
He, X.1
-
7
-
-
84966929319
-
A new view of the tree of life
-
7 Hug, L.A., A new view of the tree of life. Nat. Microbiol., 1, 2016, 16048.
-
(2016)
Nat. Microbiol.
, vol.1
, pp. 16048
-
-
Hug, L.A.1
-
8
-
-
84905375528
-
Intercellular communications in multispecies oral microbial communities
-
8 Guo, L., Intercellular communications in multispecies oral microbial communities. Front. Microbiol., 5, 2014, 328.
-
(2014)
Front. Microbiol.
, vol.5
, pp. 328
-
-
Guo, L.1
-
9
-
-
84920483040
-
An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome
-
9 Edlund, A., An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome, 1, 2013, 25.
-
(2013)
Microbiome
, vol.1
, pp. 25
-
-
Edlund, A.1
-
10
-
-
84947618510
-
Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism
-
2605–2519
-
10 Edlund, A., Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism. ISME J., 9, 2015 2605–2519.
-
(2015)
ISME J.
, vol.9
-
-
Edlund, A.1
-
11
-
-
77957357555
-
The human oral microbiome
-
11 Dewhirst, F.E., The human oral microbiome. J. Bacteriol. 192 (2010), 5002–5017.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 5002-5017
-
-
Dewhirst, F.E.1
-
12
-
-
84880335170
-
The human mycobiome in health and disease
-
12 Cui, L., The human mycobiome in health and disease. Genome Med., 5, 2013, 63.
-
(2013)
Genome Med.
, vol.5
, pp. 63
-
-
Cui, L.1
-
13
-
-
84860484915
-
The airway microbiota in cystic fibrosis: a complex fungal and bacterial community – implications for therapeutic management
-
13 Delhaes, L., The airway microbiota in cystic fibrosis: a complex fungal and bacterial community – implications for therapeutic management. PLoS One, 7, 2012, e36313.
-
(2012)
PLoS One
, vol.7
, pp. e36313
-
-
Delhaes, L.1
-
15
-
-
84916917777
-
Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease
-
15 Rizzetto, L., Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur. J. Immunol. 44 (2014), 3166–3181.
-
(2014)
Eur. J. Immunol.
, vol.44
, pp. 3166-3181
-
-
Rizzetto, L.1
-
16
-
-
84927562663
-
The lung mycobiome: an emerging field of the human respiratory microbiome
-
16 Nguyen, L.D., The lung mycobiome: an emerging field of the human respiratory microbiome. Front. Microbiol., 6, 2015, 89.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 89
-
-
Nguyen, L.D.1
-
17
-
-
84910111340
-
Molecular bases and role of viruses in the human microbiome
-
17 Abeles, S.R., Pride, D.T., Molecular bases and role of viruses in the human microbiome. J. Mol. Biol. 426 (2014), 3892–3906.
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 3892-3906
-
-
Abeles, S.R.1
Pride, D.T.2
-
18
-
-
84859885188
-
Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome
-
18 Pride, D.T., Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 6 (2012), 915–926.
-
(2012)
ISME J.
, vol.6
, pp. 915-926
-
-
Pride, D.T.1
-
19
-
-
84903975410
-
Altered oral viral ecology in association with periodontal disease
-
19 Ly, M., et al. Altered oral viral ecology in association with periodontal disease. mBio 5 (2014), 01133–1214.
-
(2014)
mBio
, vol.5
, pp. 01133-01214
-
-
Ly, M.1
-
20
-
-
33644873469
-
Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing
-
20 Breitbart, M., Rohwer, F., Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. Biotechniques 39 (2005), 729–736.
-
(2005)
Biotechniques
, vol.39
, pp. 729-736
-
-
Breitbart, M.1
Rohwer, F.2
-
21
-
-
84884986090
-
The human virome: new tools and concepts
-
21 Lecuit, M., Eloit, M., The human virome: new tools and concepts. Trends Microbiol. 21 (2013), 510–515.
-
(2013)
Trends Microbiol.
, vol.21
, pp. 510-515
-
-
Lecuit, M.1
Eloit, M.2
-
22
-
-
84948732213
-
Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome
-
22 Bikel, S., Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput. Struct. Biotechnol. J. 13 (2015), 390–401.
-
(2015)
Comput. Struct. Biotechnol. J.
, vol.13
, pp. 390-401
-
-
Bikel, S.1
-
23
-
-
84963785503
-
Computational approaches to predict bacteriophage-host relationships
-
23 Edwards, R.A., Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40 (2016), 258–272.
-
(2016)
FEMS Microbiol. Rev.
, vol.40
, pp. 258-272
-
-
Edwards, R.A.1
-
24
-
-
84946740229
-
The human gut virome: a multifaceted majority
-
24 Ogilvie, L.A., Jones, B.V., The human gut virome: a multifaceted majority. Front. Microbiol., 6, 2015, 918.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 918
-
-
Ogilvie, L.A.1
Jones, B.V.2
-
25
-
-
84897392010
-
Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi
-
25 Mukherjee, P.K., Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog., 10, 2014, e1003996.
-
(2014)
PLoS Pathog.
, vol.10
, pp. e1003996
-
-
Mukherjee, P.K.1
-
26
-
-
84922245262
-
Disease-specific alterations in the enteric virome in inflammatory bowel disease
-
26 Norman, J.M., Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160 (2015), 447–460.
-
(2015)
Cell
, vol.160
, pp. 447-460
-
-
Norman, J.M.1
-
27
-
-
84957836946
-
Biogeography of a human oral microbiome at the micron scale
-
27 Mark Welch, J.L., Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E791–E800.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E791-E800
-
-
Mark Welch, J.L.1
-
28
-
-
84965181140
-
Temporal stability of the human skin microbiome
-
28 Oh, J., Temporal stability of the human skin microbiome. Cell 165 (2016), 854–866.
-
(2016)
Cell
, vol.165
, pp. 854-866
-
-
Oh, J.1
-
29
-
-
84938817346
-
The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment
-
29 Zhang, X., The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21 (2015), 895–905.
-
(2015)
Nat. Med.
, vol.21
, pp. 895-905
-
-
Zhang, X.1
-
30
-
-
84945568963
-
Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis
-
30 Yost, S., Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med., 7, 2015, 27.
-
(2015)
Genome Med.
, vol.7
, pp. 27
-
-
Yost, S.1
-
31
-
-
84899761579
-
Metatranscriptomics of the human oral microbiome during health and disease
-
31 Jorth, P., et al. Metatranscriptomics of the human oral microbiome during health and disease. mBio 5 (2014), e01012–e01014.
-
(2014)
mBio
, vol.5
, pp. e01012-e01014
-
-
Jorth, P.1
-
32
-
-
84920432296
-
Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle
-
32 He, X., Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 244–249.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 244-249
-
-
He, X.1
-
33
-
-
84936942726
-
Unusual biology across a group comprising more than 15% of domain Bacteria
-
33 Brown, C.T., Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523 (2015), 208–211.
-
(2015)
Nature
, vol.523
, pp. 208-211
-
-
Brown, C.T.1
-
34
-
-
84963516822
-
Bacterial evolution: CPR breathes new air into the tree of life
-
34 Attar, N., Bacterial evolution: CPR breathes new air into the tree of life. Nat. Rev. Microbiol. 14 (2016), 332–333.
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 332-333
-
-
Attar, N.1
-
35
-
-
84965045404
-
RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria
-
35 Wrighton, K.C., RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria. ISME J. 10 (2016), 2702–2714.
-
(2016)
ISME J.
, vol.10
, pp. 2702-2714
-
-
Wrighton, K.C.1
-
36
-
-
84957535039
-
Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems
-
36 Burstein, D., Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat. Commun., 7, 2016, 10613.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10613
-
-
Burstein, D.1
-
37
-
-
84875828875
-
UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota
-
37 Campbell, J.H., UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 5540–5545.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 5540-5545
-
-
Campbell, J.H.1
-
38
-
-
84881138595
-
Insights into the phylogeny and coding potential of microbial dark matter
-
38 Rinke, C., Insights into the phylogeny and coding potential of microbial dark matter. Nature 499 (2013), 431–437.
-
(2013)
Nature
, vol.499
, pp. 431-437
-
-
Rinke, C.1
-
39
-
-
84924085084
-
Diverse uncultivated ultra-small bacterial cells in groundwater
-
39 Luef, B., Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun., 6, 2015, 6372.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6372
-
-
Luef, B.1
-
40
-
-
84966781466
-
The bright side of microbial dark matter: lessons learned from the uncultivated majority
-
40 Solden, L., The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr. Opin. Microbiol. 31 (2016), 217–226.
-
(2016)
Curr. Opin. Microbiol.
, vol.31
, pp. 217-226
-
-
Solden, L.1
-
41
-
-
84862162269
-
Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples
-
41 Segata, N., Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol., 13, 2012, R42.
-
(2012)
Genome Biol.
, vol.13
, pp. R42
-
-
Segata, N.1
-
42
-
-
84872154220
-
Biogeography of the ecosystems of the healthy human body
-
42 Zhou, Y., Biogeography of the ecosystems of the healthy human body. Genome Biol., 14, 2013, R1.
-
(2013)
Genome Biol.
, vol.14
, pp. R1
-
-
Zhou, Y.1
-
43
-
-
27644443333
-
Molecular identification of bacteria associated with bacterial vaginosis
-
43 Fredricks, D.N., Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 353 (2005), 1899–1911.
-
(2005)
N. Engl. J. Med.
, vol.353
, pp. 1899-1911
-
-
Fredricks, D.N.1
-
44
-
-
84907259445
-
Axenic culture of a candidate division TM7 bacterium from the human oral cavity and biofilm interactions with other oral bacteria
-
44 Soro, V., Axenic culture of a candidate division TM7 bacterium from the human oral cavity and biofilm interactions with other oral bacteria. Appl. Environ. Microbiol. 80 (2014), 6480–6489.
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 6480-6489
-
-
Soro, V.1
-
45
-
-
84899791730
-
Bacterial profile of dentine caries and the impact of pH on bacterial population diversity
-
45 Kianoush, N., Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One, 9, 2014, e92940.
-
(2014)
PLoS One
, vol.9
, pp. e92940
-
-
Kianoush, N.1
-
46
-
-
57749194898
-
Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease
-
46 Kuehbacher, T., Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J. Med. Microbiol. 57 (2008), 1569–1576.
-
(2008)
J. Med. Microbiol.
, vol.57
, pp. 1569-1576
-
-
Kuehbacher, T.1
-
47
-
-
0034992657
-
Bacterial diversity in human subgingival plaque
-
47 Paster, B.J., Bacterial diversity in human subgingival plaque. J. Bacteriol. 183 (2001), 3770–3783.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 3770-3783
-
-
Paster, B.J.1
-
48
-
-
0037335696
-
Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease
-
48 Brinig, M.M., Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl. Environ. Microbiol. 69 (2003), 1687–1694.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1687-1694
-
-
Brinig, M.M.1
-
49
-
-
78651093830
-
Microbiological and immunological characteristics of young Moroccan patients with aggressive periodontitis with and without detectable Aggregatibacter actinomycetemcomitans JP2 infection
-
49 Rylev, M., Microbiological and immunological characteristics of young Moroccan patients with aggressive periodontitis with and without detectable Aggregatibacter actinomycetemcomitans JP2 infection. Mol. Oral. Microbiol. 26 (2011), 35–51.
-
(2011)
Mol. Oral. Microbiol.
, vol.26
, pp. 35-51
-
-
Rylev, M.1
-
50
-
-
84861845321
-
Deep sequencing of the oral microbiome reveals signatures of periodontal disease
-
50 Liu, B., Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One, 7, 2012, e37919.
-
(2012)
PLoS One
, vol.7
, pp. e37919
-
-
Liu, B.1
-
51
-
-
84861342868
-
Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing
-
51 Griffen, A.L., Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 6 (2012), 1176–1185.
-
(2012)
ISME J.
, vol.6
, pp. 1176-1185
-
-
Griffen, A.L.1
-
52
-
-
84859743410
-
Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production
-
52 Takeshita, T., Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production. Sci. Rep., 2, 2012, 215.
-
(2012)
Sci. Rep.
, vol.2
, pp. 215
-
-
Takeshita, T.1
-
53
-
-
85009998154
-
Draft genome sequence of Actinomyces odontolyticus subsp. actinosynbacter Strain XH001, the basibiont of an oral TM7 epibiont
-
e01685-15
-
53 McLean, J.S., et al. Draft genome sequence of Actinomyces odontolyticus subsp. actinosynbacter Strain XH001, the basibiont of an oral TM7 epibiont. Genome Announc., 4(1), 2016 e01685-15.
-
(2016)
Genome Announc.
, vol.4
, Issue.1
-
-
McLean, J.S.1
-
54
-
-
84974815475
-
Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum
-
54 Bor, B., Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Sci. Rep., 6, 2016, 27956.
-
(2016)
Sci. Rep.
, vol.6
, pp. 27956
-
-
Bor, B.1
-
55
-
-
84939235410
-
Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions
-
55 Camanocha, A., Dewhirst, F.E., Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J. Oral. Microbiol., 6, 2014, 25468.
-
(2014)
J. Oral. Microbiol.
, vol.6
, pp. 25468
-
-
Camanocha, A.1
Dewhirst, F.E.2
-
56
-
-
84876842615
-
The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation
-
56 Abusleme, L., The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7 (2013), 1016–1025.
-
(2013)
ISME J.
, vol.7
, pp. 1016-1025
-
-
Abusleme, L.1
-
57
-
-
84914102036
-
The oral microbiome and the immunobiology of periodontal disease and caries
-
57 Costalonga, M., Herzberg, M.C., The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162 (2014), 22–38.
-
(2014)
Immunol. Lett.
, vol.162
, pp. 22-38
-
-
Costalonga, M.1
Herzberg, M.C.2
-
58
-
-
77649230349
-
Characterization of the oral fungal microbiome (mycobiome) in healthy individuals
-
58 Ghannoum, M.A., Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog., 6, 2010, e1000713.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1000713
-
-
Ghannoum, M.A.1
-
59
-
-
84897545954
-
Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal
-
59 Dupuy, A.K., Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One, 9, 2014, e90899.
-
(2014)
PLoS One
, vol.9
, pp. e90899
-
-
Dupuy, A.K.1
-
60
-
-
84901296354
-
The mycobiota: interactions between commensal fungi and the host immune system
-
60 Underhill, D.M., Iliev, I.D., The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14 (2014), 405–416.
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 405-416
-
-
Underhill, D.M.1
Iliev, I.D.2
-
61
-
-
84916898718
-
The bacteriome-mycobiome interaction and antifungal host defense
-
61 Oever, J.T., Netea, M.G., The bacteriome-mycobiome interaction and antifungal host defense. Eur. J. Immunol. 44 (2014), 3182–3191.
-
(2014)
Eur. J. Immunol.
, vol.44
, pp. 3182-3191
-
-
Oever, J.T.1
Netea, M.G.2
-
62
-
-
84982245431
-
Candida albicans in multispecies oral communities; a keystone commensal?
-
62 Janus, M.M., Candida albicans in multispecies oral communities; a keystone commensal?. Adv. Exp. Med. Biol. 931 (2016), 13–20.
-
(2016)
Adv. Exp. Med. Biol.
, vol.931
, pp. 13-20
-
-
Janus, M.M.1
-
63
-
-
84987990615
-
Fungal–bacterial interactions and their relevance to oral health: linking the clinic and the bench
-
63 Diaz, P.I., et al. Fungal–bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front. Cell. Infect. Microbiol., 4, 2014, 101.
-
(2014)
Front. Cell. Infect. Microbiol.
, vol.4
, pp. 101
-
-
Diaz, P.I.1
-
64
-
-
85007196148
-
Candida–bacteria interactions: their impact on human disease
-
Published online June, 2016
-
64 Allison, D.L., et al. Candida–bacteria interactions: their impact on human disease. Microbiol. Spectr., 2016, 10.1128/microbiolspec Published online June, 2016.
-
(2016)
Microbiol. Spectr.
-
-
Allison, D.L.1
-
65
-
-
84906942533
-
Human oral viruses are personal, persistent and gender-consistent
-
65 Abeles, S.R., Human oral viruses are personal, persistent and gender-consistent. ISME J. 8 (2014), 1753–1767.
-
(2014)
ISME J.
, vol.8
, pp. 1753-1767
-
-
Abeles, S.R.1
-
66
-
-
84883192222
-
Association between living environment and human oral viral ecology
-
66 Robles-Sikisaka, R., Association between living environment and human oral viral ecology. ISME J. 7 (2013), 1710–1724.
-
(2013)
ISME J.
, vol.7
, pp. 1710-1724
-
-
Robles-Sikisaka, R.1
-
67
-
-
84943258596
-
Effects of long term antibiotic therapy on human oral and fecal viromes
-
67 Abeles, S.R., Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS One, 10, 2015, e0134941.
-
(2015)
PLoS One
, vol.10
, pp. e0134941
-
-
Abeles, S.R.1
-
68
-
-
84907276513
-
Metagenomic analysis of double-stranded DNA viruses in healthy adults
-
68 Wylie, K.M., Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol., 12, 2014, 71.
-
(2014)
BMC Biol.
, vol.12
, pp. 71
-
-
Wylie, K.M.1
-
69
-
-
84903360551
-
Characterization of bacteriophage communities and CRISPR profiles from dental plaque
-
69 Naidu, M., Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol., 14, 2014, 175.
-
(2014)
BMC Microbiol.
, vol.14
, pp. 175
-
-
Naidu, M.1
-
70
-
-
84870921485
-
Failure to detect an association between aggressive periodontitis and the prevalence of herpesviruses
-
70 Stein, J.M., Failure to detect an association between aggressive periodontitis and the prevalence of herpesviruses. J. Clin. Periodontol. 40 (2013), 1–7.
-
(2013)
J. Clin. Periodontol.
, vol.40
, pp. 1-7
-
-
Stein, J.M.1
-
71
-
-
84907011024
-
The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome
-
71 Roberts, A.P., Kreth, J., The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome. Front. Cell. Infect. Microbiol., 4, 2014, 124.
-
(2014)
Front. Cell. Infect. Microbiol.
, vol.4
, pp. 124
-
-
Roberts, A.P.1
Kreth, J.2
-
72
-
-
85027938776
-
Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota
-
72 Lugli, G.A., Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ. Microbiol. 18 (2016), 2196–2213.
-
(2016)
Environ. Microbiol.
, vol.18
, pp. 2196-2213
-
-
Lugli, G.A.1
-
73
-
-
84987654794
-
Healthy human gut phageome
-
73 Manrique, P., Healthy human gut phageome. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 10400–10405.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 10400-10405
-
-
Manrique, P.1
-
74
-
-
84902517582
-
Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone
-
74 Debarbieux, L., Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone. Curr. Opin. Microbiol. 20 (2014), 125–130.
-
(2014)
Curr. Opin. Microbiol.
, vol.20
, pp. 125-130
-
-
Debarbieux, L.1
-
75
-
-
84898731883
-
Bacteriophages: an underestimated role in human and animal health?
-
75 De Paepe, M., Bacteriophages: an underestimated role in human and animal health?. Front. Cell. Infect. Microbiol., 4, 2014, 39.
-
(2014)
Front. Cell. Infect. Microbiol.
, vol.4
, pp. 39
-
-
De Paepe, M.1
-
76
-
-
84871860604
-
Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota
-
76 Mills, S., Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4 (2013), 4–16.
-
(2013)
Gut Microbes
, vol.4
, pp. 4-16
-
-
Mills, S.1
-
77
-
-
84943365231
-
CRISPRs provide broad and robust protection to oral microbial flora of gingival health against bacteriophage challenge
-
77 Zhou, H., CRISPRs provide broad and robust protection to oral microbial flora of gingival health against bacteriophage challenge. Protein Cell 6 (2015), 541–545.
-
(2015)
Protein Cell
, vol.6
, pp. 541-545
-
-
Zhou, H.1
-
78
-
-
84930208860
-
Global transcription of CRISPR loci in the human oral cavity
-
78 Lum, A.G., Global transcription of CRISPR loci in the human oral cavity. BMC Genomics, 16, 2015, 401.
-
(2015)
BMC Genomics
, vol.16
, pp. 401
-
-
Lum, A.G.1
-
79
-
-
84990838988
-
Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
-
79 Pawluk, A., Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol., 1, 2016, 16085.
-
(2016)
Nat. Microbiol.
, vol.1
, pp. 16085
-
-
Pawluk, A.1
-
80
-
-
84956842046
-
Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins
-
80 Maxwell, K.L., Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLoS Pathog., 12, 2016, e1005282.
-
(2016)
PLoS Pathog.
, vol.12
, pp. e1005282
-
-
Maxwell, K.L.1
-
81
-
-
84978852403
-
The Janus-Face of bacteriophages across human body habitats
-
81 Wahida, A., The Janus-Face of bacteriophages across human body habitats. PLoS Pathog., 12, 2016, e1005634.
-
(2016)
PLoS Pathog.
, vol.12
, pp. e1005634
-
-
Wahida, A.1
-
82
-
-
84885773922
-
Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1
-
82 Betts, A., Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol. Appl. 6 (2013), 1054–1063.
-
(2013)
Evol. Appl.
, vol.6
, pp. 1054-1063
-
-
Betts, A.1
-
83
-
-
84961213584
-
Evolutionary rationale for phages as complements of antibiotics
-
83 Torres-Barcelo, C., Hochberg, M.E., Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24 (2016), 249–256.
-
(2016)
Trends Microbiol.
, vol.24
, pp. 249-256
-
-
Torres-Barcelo, C.1
Hochberg, M.E.2
-
84
-
-
84941202270
-
Ecology of anti-biofilm agents II: bacteriophage exploitation and biocontrol of biofilm bacteria
-
84 Abedon, S.T., Ecology of anti-biofilm agents II: bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals (Basel) 8 (2015), 559–589.
-
(2015)
Pharmaceuticals (Basel)
, vol.8
, pp. 559-589
-
-
Abedon, S.T.1
-
85
-
-
84948949452
-
Microbiology. Phage therapy redux – what is to be done?
-
85 Young, R., Gill, J.J., Microbiology. Phage therapy redux – what is to be done?. Science 350 (2015), 1163–1164.
-
(2015)
Science
, vol.350
, pp. 1163-1164
-
-
Young, R.1
Gill, J.J.2
-
86
-
-
78149441739
-
Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum
-
86 Machuca, P., Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl. Environ. Microbiol. 76 (2010), 7243–7250.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 7243-7250
-
-
Machuca, P.1
-
87
-
-
84903574945
-
Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque
-
87 Aljarbou, A.N., Aljofan, M., Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque. J. Microbiol. 52 (2014), 609–618.
-
(2014)
J. Microbiol.
, vol.52
, pp. 609-618
-
-
Aljarbou, A.N.1
Aljofan, M.2
-
88
-
-
84946905495
-
Isolation of a novel phage with activity against Streptococcus mutans biofilms
-
88 Dalmasso, M., Isolation of a novel phage with activity against Streptococcus mutans biofilms. PLoS One, 10, 2015, e0138651.
-
(2015)
PLoS One
, vol.10
, pp. e0138651
-
-
Dalmasso, M.1
-
89
-
-
84951567009
-
Phenotypic and physiological characterization of the epibiotic interaction between TM7x and its basibiont Actinomyces
-
89 Bor, B., Phenotypic and physiological characterization of the epibiotic interaction between TM7x and its basibiont Actinomyces. Microb. Ecol. 71 (2016), 243–255.
-
(2016)
Microb. Ecol.
, vol.71
, pp. 243-255
-
-
Bor, B.1
-
90
-
-
70049114998
-
Cross-kingdom interactions: Candida albicans and bacteria
-
90 Shirtliff, M.E., Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299 (2009), 1–8.
-
(2009)
FEMS Microbiol. Lett.
, vol.299
, pp. 1-8
-
-
Shirtliff, M.E.1
-
91
-
-
84898941667
-
Candida and other fungal species: forgotten players of healthy oral microbiota
-
91 Krom, B.P., Candida and other fungal species: forgotten players of healthy oral microbiota. J. Dent. Res. 93 (2014), 445–451.
-
(2014)
J. Dent. Res.
, vol.93
, pp. 445-451
-
-
Krom, B.P.1
-
92
-
-
84899480651
-
Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease
-
92 Xu, H., et al. Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol. Oral Microbiol. 29 (2014), 99–116.
-
(2014)
Mol. Oral Microbiol.
, vol.29
, pp. 99-116
-
-
Xu, H.1
-
93
-
-
84875045260
-
Microbial interactions in building of communities
-
93 Wright, C.J., Microbial interactions in building of communities. Mol. Oral Microbiol. 28 (2013), 83–101.
-
(2013)
Mol. Oral Microbiol.
, vol.28
, pp. 83-101
-
-
Wright, C.J.1
-
94
-
-
84960908013
-
Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle
-
Published online March 15, 2016
-
94 Cavalcanti, I.M., et al. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle. Mol. Oral Microbiol., 2016, 10.1111/omi.12154 Published online March 15, 2016.
-
(2016)
Mol. Oral Microbiol.
-
-
Cavalcanti, I.M.1
-
95
-
-
84963906410
-
Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material
-
95 Cavalcanti, I.M., Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material. Pathog. Dis., 74, 2016, ftw002.
-
(2016)
Pathog. Dis.
, vol.74
, pp. ftw002
-
-
Cavalcanti, I.M.1
-
96
-
-
84985010093
-
Streptococcus oralis and Candida albicans synergistically activate mu-calpain to degrade E-cadherin from oral epithelial junctions
-
96 Xu, H., Streptococcus oralis and Candida albicans synergistically activate mu-calpain to degrade E-cadherin from oral epithelial junctions. J. Infect. Dis. 214 (2016), 925–934.
-
(2016)
J. Infect. Dis.
, vol.214
, pp. 925-934
-
-
Xu, H.1
-
97
-
-
84857173874
-
Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model
-
97 Diaz, P.I., et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect. Immun. 80 (2012), 620–632.
-
(2012)
Infect. Immun.
, vol.80
, pp. 620-632
-
-
Diaz, P.I.1
-
98
-
-
84898849465
-
Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo
-
98 Falsetta, M.L., Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect. Immun. 82 (2014), 1968–1981.
-
(2014)
Infect. Immun.
, vol.82
, pp. 1968-1981
-
-
Falsetta, M.L.1
-
99
-
-
85015091762
-
Candida albicans in oral biofilms could prevent caries
-
99 Willems, H.M., Candida albicans in oral biofilms could prevent caries. Pathog. Dis., 74, 2016, ftw039.
-
(2016)
Pathog. Dis.
, vol.74
, pp. ftw039
-
-
Willems, H.M.1
-
100
-
-
84994593739
-
Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent
-
100 Arzmi, M.H., et al. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent. Med. Mycol. 54 (2016), 856–864.
-
(2016)
Med. Mycol.
, vol.54
, pp. 856-864
-
-
Arzmi, M.H.1
-
101
-
-
84908243042
-
Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans
-
101 Sztajer, H., Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J. 8 (2014), 2256–2271.
-
(2014)
ISME J.
, vol.8
, pp. 2256-2271
-
-
Sztajer, H.1
-
102
-
-
84940044202
-
binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans
-
102 Hwang, G., binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. J. Dent. Res. 94 (2015), 1310–1317.
-
(2015)
J. Dent. Res.
, vol.94
, pp. 1310-1317
-
-
Hwang, G.1
-
103
-
-
84919795322
-
Candida albicans and Streptococcus mutans: a potential synergistic alliance to cause virulent tooth decay in children
-
103 Koo, H., Bowen, W.H., Candida albicans and Streptococcus mutans: a potential synergistic alliance to cause virulent tooth decay in children. Future Microbiol. 9 (2014), 1295–1297.
-
(2014)
Future Microbiol.
, vol.9
, pp. 1295-1297
-
-
Koo, H.1
Bowen, W.H.2
-
104
-
-
84986205236
-
Association of oral Candida albicans with severe early childhood caries – a pilot study
-
104 Thomas, A., et al. Association of oral Candida albicans with severe early childhood caries – a pilot study. J. Clin. Diagn. Res. 10 (2016), ZC109–ZC112.
-
(2016)
J. Clin. Diagn. Res.
, vol.10
, pp. ZC109-ZC112
-
-
Thomas, A.1
|