메뉴 건너뛰기




Volumn 25, Issue 5, 2017, Pages 362-374

Ecology of the Oral Microbiome: Beyond Bacteria

Author keywords

Candidate phyla radiation; Fungi; Meta omics; Oral microbiome; Phage

Indexed keywords

INTERNAL TRANSCRIBED SPACER; RIBOSOME RNA; RNA 16S;

EID: 85009471289     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2016.12.012     Document Type: Review
Times cited : (234)

References (104)
  • 1
    • 2542574141 scopus 로고    scopus 로고
    • The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society
    • 1 Gest, H., The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society. Notes Rec. R. Soc. Lond. 58 (2004), 187–201.
    • (2004) Notes Rec. R. Soc. Lond. , vol.58 , pp. 187-201
    • Gest, H.1
  • 2
    • 37349040358 scopus 로고    scopus 로고
    • Interspecies interactions within oral microbial communities
    • 2 Kuramitsu, H.K., Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 71 (2007), 653–670.
    • (2007) Microbiol. Mol. Biol. Rev. , vol.71 , pp. 653-670
    • Kuramitsu, H.K.1
  • 3
    • 0033757759 scopus 로고    scopus 로고
    • Oral microbial communities: biofilms, interactions, and genetic systems
    • 3 Kolenbrander, P.E., Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 54 (2000), 413–437.
    • (2000) Annu. Rev. Microbiol. , vol.54 , pp. 413-437
    • Kolenbrander, P.E.1
  • 4
    • 77953620116 scopus 로고    scopus 로고
    • Oral multispecies biofilm development and the key role of cell–cell distance
    • 4 Kolenbrander, P.E., et al. Oral multispecies biofilm development and the key role of cell–cell distance. Nat. Rev. Microbiol. 8 (2010), 471–480.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 471-480
    • Kolenbrander, P.E.1
  • 5
    • 84958211859 scopus 로고    scopus 로고
    • Temporal stability of the salivary microbiota in oral health
    • 5 Belstrom, D., Temporal stability of the salivary microbiota in oral health. PLoS One, 11, 2016, e0147472.
    • (2016) PLoS One , vol.11 , pp. e0147472
    • Belstrom, D.1
  • 6
    • 84894313991 scopus 로고    scopus 로고
    • The social structure of microbial community involved in colonization resistance
    • 6 He, X., The social structure of microbial community involved in colonization resistance. ISME J. 8 (2014), 564–574.
    • (2014) ISME J. , vol.8 , pp. 564-574
    • He, X.1
  • 7
    • 84966929319 scopus 로고    scopus 로고
    • A new view of the tree of life
    • 7 Hug, L.A., A new view of the tree of life. Nat. Microbiol., 1, 2016, 16048.
    • (2016) Nat. Microbiol. , vol.1 , pp. 16048
    • Hug, L.A.1
  • 8
    • 84905375528 scopus 로고    scopus 로고
    • Intercellular communications in multispecies oral microbial communities
    • 8 Guo, L., Intercellular communications in multispecies oral microbial communities. Front. Microbiol., 5, 2014, 328.
    • (2014) Front. Microbiol. , vol.5 , pp. 328
    • Guo, L.1
  • 9
    • 84920483040 scopus 로고    scopus 로고
    • An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome
    • 9 Edlund, A., An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome, 1, 2013, 25.
    • (2013) Microbiome , vol.1 , pp. 25
    • Edlund, A.1
  • 10
    • 84947618510 scopus 로고    scopus 로고
    • Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism
    • 2605–2519
    • 10 Edlund, A., Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism. ISME J., 9, 2015 2605–2519.
    • (2015) ISME J. , vol.9
    • Edlund, A.1
  • 11
    • 77957357555 scopus 로고    scopus 로고
    • The human oral microbiome
    • 11 Dewhirst, F.E., The human oral microbiome. J. Bacteriol. 192 (2010), 5002–5017.
    • (2010) J. Bacteriol. , vol.192 , pp. 5002-5017
    • Dewhirst, F.E.1
  • 12
    • 84880335170 scopus 로고    scopus 로고
    • The human mycobiome in health and disease
    • 12 Cui, L., The human mycobiome in health and disease. Genome Med., 5, 2013, 63.
    • (2013) Genome Med. , vol.5 , pp. 63
    • Cui, L.1
  • 13
    • 84860484915 scopus 로고    scopus 로고
    • The airway microbiota in cystic fibrosis: a complex fungal and bacterial community – implications for therapeutic management
    • 13 Delhaes, L., The airway microbiota in cystic fibrosis: a complex fungal and bacterial community – implications for therapeutic management. PLoS One, 7, 2012, e36313.
    • (2012) PLoS One , vol.7 , pp. e36313
    • Delhaes, L.1
  • 15
    • 84916917777 scopus 로고    scopus 로고
    • Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease
    • 15 Rizzetto, L., Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur. J. Immunol. 44 (2014), 3166–3181.
    • (2014) Eur. J. Immunol. , vol.44 , pp. 3166-3181
    • Rizzetto, L.1
  • 16
    • 84927562663 scopus 로고    scopus 로고
    • The lung mycobiome: an emerging field of the human respiratory microbiome
    • 16 Nguyen, L.D., The lung mycobiome: an emerging field of the human respiratory microbiome. Front. Microbiol., 6, 2015, 89.
    • (2015) Front. Microbiol. , vol.6 , pp. 89
    • Nguyen, L.D.1
  • 17
    • 84910111340 scopus 로고    scopus 로고
    • Molecular bases and role of viruses in the human microbiome
    • 17 Abeles, S.R., Pride, D.T., Molecular bases and role of viruses in the human microbiome. J. Mol. Biol. 426 (2014), 3892–3906.
    • (2014) J. Mol. Biol. , vol.426 , pp. 3892-3906
    • Abeles, S.R.1    Pride, D.T.2
  • 18
    • 84859885188 scopus 로고    scopus 로고
    • Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome
    • 18 Pride, D.T., Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 6 (2012), 915–926.
    • (2012) ISME J. , vol.6 , pp. 915-926
    • Pride, D.T.1
  • 19
    • 84903975410 scopus 로고    scopus 로고
    • Altered oral viral ecology in association with periodontal disease
    • 19 Ly, M., et al. Altered oral viral ecology in association with periodontal disease. mBio 5 (2014), 01133–1214.
    • (2014) mBio , vol.5 , pp. 01133-01214
    • Ly, M.1
  • 20
    • 33644873469 scopus 로고    scopus 로고
    • Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing
    • 20 Breitbart, M., Rohwer, F., Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. Biotechniques 39 (2005), 729–736.
    • (2005) Biotechniques , vol.39 , pp. 729-736
    • Breitbart, M.1    Rohwer, F.2
  • 21
    • 84884986090 scopus 로고    scopus 로고
    • The human virome: new tools and concepts
    • 21 Lecuit, M., Eloit, M., The human virome: new tools and concepts. Trends Microbiol. 21 (2013), 510–515.
    • (2013) Trends Microbiol. , vol.21 , pp. 510-515
    • Lecuit, M.1    Eloit, M.2
  • 22
    • 84948732213 scopus 로고    scopus 로고
    • Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome
    • 22 Bikel, S., Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput. Struct. Biotechnol. J. 13 (2015), 390–401.
    • (2015) Comput. Struct. Biotechnol. J. , vol.13 , pp. 390-401
    • Bikel, S.1
  • 23
    • 84963785503 scopus 로고    scopus 로고
    • Computational approaches to predict bacteriophage-host relationships
    • 23 Edwards, R.A., Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40 (2016), 258–272.
    • (2016) FEMS Microbiol. Rev. , vol.40 , pp. 258-272
    • Edwards, R.A.1
  • 24
    • 84946740229 scopus 로고    scopus 로고
    • The human gut virome: a multifaceted majority
    • 24 Ogilvie, L.A., Jones, B.V., The human gut virome: a multifaceted majority. Front. Microbiol., 6, 2015, 918.
    • (2015) Front. Microbiol. , vol.6 , pp. 918
    • Ogilvie, L.A.1    Jones, B.V.2
  • 25
    • 84897392010 scopus 로고    scopus 로고
    • Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi
    • 25 Mukherjee, P.K., Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog., 10, 2014, e1003996.
    • (2014) PLoS Pathog. , vol.10 , pp. e1003996
    • Mukherjee, P.K.1
  • 26
    • 84922245262 scopus 로고    scopus 로고
    • Disease-specific alterations in the enteric virome in inflammatory bowel disease
    • 26 Norman, J.M., Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160 (2015), 447–460.
    • (2015) Cell , vol.160 , pp. 447-460
    • Norman, J.M.1
  • 27
    • 84957836946 scopus 로고    scopus 로고
    • Biogeography of a human oral microbiome at the micron scale
    • 27 Mark Welch, J.L., Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E791–E800.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E791-E800
    • Mark Welch, J.L.1
  • 28
    • 84965181140 scopus 로고    scopus 로고
    • Temporal stability of the human skin microbiome
    • 28 Oh, J., Temporal stability of the human skin microbiome. Cell 165 (2016), 854–866.
    • (2016) Cell , vol.165 , pp. 854-866
    • Oh, J.1
  • 29
    • 84938817346 scopus 로고    scopus 로고
    • The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment
    • 29 Zhang, X., The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21 (2015), 895–905.
    • (2015) Nat. Med. , vol.21 , pp. 895-905
    • Zhang, X.1
  • 30
    • 84945568963 scopus 로고    scopus 로고
    • Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis
    • 30 Yost, S., Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med., 7, 2015, 27.
    • (2015) Genome Med. , vol.7 , pp. 27
    • Yost, S.1
  • 31
    • 84899761579 scopus 로고    scopus 로고
    • Metatranscriptomics of the human oral microbiome during health and disease
    • 31 Jorth, P., et al. Metatranscriptomics of the human oral microbiome during health and disease. mBio 5 (2014), e01012–e01014.
    • (2014) mBio , vol.5 , pp. e01012-e01014
    • Jorth, P.1
  • 32
    • 84920432296 scopus 로고    scopus 로고
    • Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle
    • 32 He, X., Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 244–249.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 244-249
    • He, X.1
  • 33
    • 84936942726 scopus 로고    scopus 로고
    • Unusual biology across a group comprising more than 15% of domain Bacteria
    • 33 Brown, C.T., Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523 (2015), 208–211.
    • (2015) Nature , vol.523 , pp. 208-211
    • Brown, C.T.1
  • 34
    • 84963516822 scopus 로고    scopus 로고
    • Bacterial evolution: CPR breathes new air into the tree of life
    • 34 Attar, N., Bacterial evolution: CPR breathes new air into the tree of life. Nat. Rev. Microbiol. 14 (2016), 332–333.
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 332-333
    • Attar, N.1
  • 35
    • 84965045404 scopus 로고    scopus 로고
    • RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria
    • 35 Wrighton, K.C., RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria. ISME J. 10 (2016), 2702–2714.
    • (2016) ISME J. , vol.10 , pp. 2702-2714
    • Wrighton, K.C.1
  • 36
    • 84957535039 scopus 로고    scopus 로고
    • Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems
    • 36 Burstein, D., Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat. Commun., 7, 2016, 10613.
    • (2016) Nat. Commun. , vol.7 , pp. 10613
    • Burstein, D.1
  • 37
    • 84875828875 scopus 로고    scopus 로고
    • UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota
    • 37 Campbell, J.H., UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 5540–5545.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 5540-5545
    • Campbell, J.H.1
  • 38
    • 84881138595 scopus 로고    scopus 로고
    • Insights into the phylogeny and coding potential of microbial dark matter
    • 38 Rinke, C., Insights into the phylogeny and coding potential of microbial dark matter. Nature 499 (2013), 431–437.
    • (2013) Nature , vol.499 , pp. 431-437
    • Rinke, C.1
  • 39
    • 84924085084 scopus 로고    scopus 로고
    • Diverse uncultivated ultra-small bacterial cells in groundwater
    • 39 Luef, B., Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun., 6, 2015, 6372.
    • (2015) Nat. Commun. , vol.6 , pp. 6372
    • Luef, B.1
  • 40
    • 84966781466 scopus 로고    scopus 로고
    • The bright side of microbial dark matter: lessons learned from the uncultivated majority
    • 40 Solden, L., The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr. Opin. Microbiol. 31 (2016), 217–226.
    • (2016) Curr. Opin. Microbiol. , vol.31 , pp. 217-226
    • Solden, L.1
  • 41
    • 84862162269 scopus 로고    scopus 로고
    • Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples
    • 41 Segata, N., Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol., 13, 2012, R42.
    • (2012) Genome Biol. , vol.13 , pp. R42
    • Segata, N.1
  • 42
    • 84872154220 scopus 로고    scopus 로고
    • Biogeography of the ecosystems of the healthy human body
    • 42 Zhou, Y., Biogeography of the ecosystems of the healthy human body. Genome Biol., 14, 2013, R1.
    • (2013) Genome Biol. , vol.14 , pp. R1
    • Zhou, Y.1
  • 43
    • 27644443333 scopus 로고    scopus 로고
    • Molecular identification of bacteria associated with bacterial vaginosis
    • 43 Fredricks, D.N., Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 353 (2005), 1899–1911.
    • (2005) N. Engl. J. Med. , vol.353 , pp. 1899-1911
    • Fredricks, D.N.1
  • 44
    • 84907259445 scopus 로고    scopus 로고
    • Axenic culture of a candidate division TM7 bacterium from the human oral cavity and biofilm interactions with other oral bacteria
    • 44 Soro, V., Axenic culture of a candidate division TM7 bacterium from the human oral cavity and biofilm interactions with other oral bacteria. Appl. Environ. Microbiol. 80 (2014), 6480–6489.
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 6480-6489
    • Soro, V.1
  • 45
    • 84899791730 scopus 로고    scopus 로고
    • Bacterial profile of dentine caries and the impact of pH on bacterial population diversity
    • 45 Kianoush, N., Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One, 9, 2014, e92940.
    • (2014) PLoS One , vol.9 , pp. e92940
    • Kianoush, N.1
  • 46
    • 57749194898 scopus 로고    scopus 로고
    • Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease
    • 46 Kuehbacher, T., Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J. Med. Microbiol. 57 (2008), 1569–1576.
    • (2008) J. Med. Microbiol. , vol.57 , pp. 1569-1576
    • Kuehbacher, T.1
  • 47
    • 0034992657 scopus 로고    scopus 로고
    • Bacterial diversity in human subgingival plaque
    • 47 Paster, B.J., Bacterial diversity in human subgingival plaque. J. Bacteriol. 183 (2001), 3770–3783.
    • (2001) J. Bacteriol. , vol.183 , pp. 3770-3783
    • Paster, B.J.1
  • 48
    • 0037335696 scopus 로고    scopus 로고
    • Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease
    • 48 Brinig, M.M., Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl. Environ. Microbiol. 69 (2003), 1687–1694.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1687-1694
    • Brinig, M.M.1
  • 49
    • 78651093830 scopus 로고    scopus 로고
    • Microbiological and immunological characteristics of young Moroccan patients with aggressive periodontitis with and without detectable Aggregatibacter actinomycetemcomitans JP2 infection
    • 49 Rylev, M., Microbiological and immunological characteristics of young Moroccan patients with aggressive periodontitis with and without detectable Aggregatibacter actinomycetemcomitans JP2 infection. Mol. Oral. Microbiol. 26 (2011), 35–51.
    • (2011) Mol. Oral. Microbiol. , vol.26 , pp. 35-51
    • Rylev, M.1
  • 50
    • 84861845321 scopus 로고    scopus 로고
    • Deep sequencing of the oral microbiome reveals signatures of periodontal disease
    • 50 Liu, B., Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One, 7, 2012, e37919.
    • (2012) PLoS One , vol.7 , pp. e37919
    • Liu, B.1
  • 51
    • 84861342868 scopus 로고    scopus 로고
    • Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing
    • 51 Griffen, A.L., Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 6 (2012), 1176–1185.
    • (2012) ISME J. , vol.6 , pp. 1176-1185
    • Griffen, A.L.1
  • 52
    • 84859743410 scopus 로고    scopus 로고
    • Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production
    • 52 Takeshita, T., Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production. Sci. Rep., 2, 2012, 215.
    • (2012) Sci. Rep. , vol.2 , pp. 215
    • Takeshita, T.1
  • 53
    • 85009998154 scopus 로고    scopus 로고
    • Draft genome sequence of Actinomyces odontolyticus subsp. actinosynbacter Strain XH001, the basibiont of an oral TM7 epibiont
    • e01685-15
    • 53 McLean, J.S., et al. Draft genome sequence of Actinomyces odontolyticus subsp. actinosynbacter Strain XH001, the basibiont of an oral TM7 epibiont. Genome Announc., 4(1), 2016 e01685-15.
    • (2016) Genome Announc. , vol.4 , Issue.1
    • McLean, J.S.1
  • 54
    • 84974815475 scopus 로고    scopus 로고
    • Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum
    • 54 Bor, B., Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Sci. Rep., 6, 2016, 27956.
    • (2016) Sci. Rep. , vol.6 , pp. 27956
    • Bor, B.1
  • 55
    • 84939235410 scopus 로고    scopus 로고
    • Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions
    • 55 Camanocha, A., Dewhirst, F.E., Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J. Oral. Microbiol., 6, 2014, 25468.
    • (2014) J. Oral. Microbiol. , vol.6 , pp. 25468
    • Camanocha, A.1    Dewhirst, F.E.2
  • 56
    • 84876842615 scopus 로고    scopus 로고
    • The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation
    • 56 Abusleme, L., The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7 (2013), 1016–1025.
    • (2013) ISME J. , vol.7 , pp. 1016-1025
    • Abusleme, L.1
  • 57
    • 84914102036 scopus 로고    scopus 로고
    • The oral microbiome and the immunobiology of periodontal disease and caries
    • 57 Costalonga, M., Herzberg, M.C., The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162 (2014), 22–38.
    • (2014) Immunol. Lett. , vol.162 , pp. 22-38
    • Costalonga, M.1    Herzberg, M.C.2
  • 58
    • 77649230349 scopus 로고    scopus 로고
    • Characterization of the oral fungal microbiome (mycobiome) in healthy individuals
    • 58 Ghannoum, M.A., Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog., 6, 2010, e1000713.
    • (2010) PLoS Pathog. , vol.6 , pp. e1000713
    • Ghannoum, M.A.1
  • 59
    • 84897545954 scopus 로고    scopus 로고
    • Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal
    • 59 Dupuy, A.K., Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One, 9, 2014, e90899.
    • (2014) PLoS One , vol.9 , pp. e90899
    • Dupuy, A.K.1
  • 60
    • 84901296354 scopus 로고    scopus 로고
    • The mycobiota: interactions between commensal fungi and the host immune system
    • 60 Underhill, D.M., Iliev, I.D., The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14 (2014), 405–416.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 405-416
    • Underhill, D.M.1    Iliev, I.D.2
  • 61
    • 84916898718 scopus 로고    scopus 로고
    • The bacteriome-mycobiome interaction and antifungal host defense
    • 61 Oever, J.T., Netea, M.G., The bacteriome-mycobiome interaction and antifungal host defense. Eur. J. Immunol. 44 (2014), 3182–3191.
    • (2014) Eur. J. Immunol. , vol.44 , pp. 3182-3191
    • Oever, J.T.1    Netea, M.G.2
  • 62
    • 84982245431 scopus 로고    scopus 로고
    • Candida albicans in multispecies oral communities; a keystone commensal?
    • 62 Janus, M.M., Candida albicans in multispecies oral communities; a keystone commensal?. Adv. Exp. Med. Biol. 931 (2016), 13–20.
    • (2016) Adv. Exp. Med. Biol. , vol.931 , pp. 13-20
    • Janus, M.M.1
  • 63
    • 84987990615 scopus 로고    scopus 로고
    • Fungal–bacterial interactions and their relevance to oral health: linking the clinic and the bench
    • 63 Diaz, P.I., et al. Fungal–bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front. Cell. Infect. Microbiol., 4, 2014, 101.
    • (2014) Front. Cell. Infect. Microbiol. , vol.4 , pp. 101
    • Diaz, P.I.1
  • 64
    • 85007196148 scopus 로고    scopus 로고
    • Candida–bacteria interactions: their impact on human disease
    • Published online June, 2016
    • 64 Allison, D.L., et al. Candida–bacteria interactions: their impact on human disease. Microbiol. Spectr., 2016, 10.1128/microbiolspec Published online June, 2016.
    • (2016) Microbiol. Spectr.
    • Allison, D.L.1
  • 65
    • 84906942533 scopus 로고    scopus 로고
    • Human oral viruses are personal, persistent and gender-consistent
    • 65 Abeles, S.R., Human oral viruses are personal, persistent and gender-consistent. ISME J. 8 (2014), 1753–1767.
    • (2014) ISME J. , vol.8 , pp. 1753-1767
    • Abeles, S.R.1
  • 66
    • 84883192222 scopus 로고    scopus 로고
    • Association between living environment and human oral viral ecology
    • 66 Robles-Sikisaka, R., Association between living environment and human oral viral ecology. ISME J. 7 (2013), 1710–1724.
    • (2013) ISME J. , vol.7 , pp. 1710-1724
    • Robles-Sikisaka, R.1
  • 67
    • 84943258596 scopus 로고    scopus 로고
    • Effects of long term antibiotic therapy on human oral and fecal viromes
    • 67 Abeles, S.R., Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS One, 10, 2015, e0134941.
    • (2015) PLoS One , vol.10 , pp. e0134941
    • Abeles, S.R.1
  • 68
    • 84907276513 scopus 로고    scopus 로고
    • Metagenomic analysis of double-stranded DNA viruses in healthy adults
    • 68 Wylie, K.M., Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol., 12, 2014, 71.
    • (2014) BMC Biol. , vol.12 , pp. 71
    • Wylie, K.M.1
  • 69
    • 84903360551 scopus 로고    scopus 로고
    • Characterization of bacteriophage communities and CRISPR profiles from dental plaque
    • 69 Naidu, M., Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol., 14, 2014, 175.
    • (2014) BMC Microbiol. , vol.14 , pp. 175
    • Naidu, M.1
  • 70
    • 84870921485 scopus 로고    scopus 로고
    • Failure to detect an association between aggressive periodontitis and the prevalence of herpesviruses
    • 70 Stein, J.M., Failure to detect an association between aggressive periodontitis and the prevalence of herpesviruses. J. Clin. Periodontol. 40 (2013), 1–7.
    • (2013) J. Clin. Periodontol. , vol.40 , pp. 1-7
    • Stein, J.M.1
  • 71
    • 84907011024 scopus 로고    scopus 로고
    • The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome
    • 71 Roberts, A.P., Kreth, J., The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome. Front. Cell. Infect. Microbiol., 4, 2014, 124.
    • (2014) Front. Cell. Infect. Microbiol. , vol.4 , pp. 124
    • Roberts, A.P.1    Kreth, J.2
  • 72
    • 85027938776 scopus 로고    scopus 로고
    • Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota
    • 72 Lugli, G.A., Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ. Microbiol. 18 (2016), 2196–2213.
    • (2016) Environ. Microbiol. , vol.18 , pp. 2196-2213
    • Lugli, G.A.1
  • 73
    • 84987654794 scopus 로고    scopus 로고
    • Healthy human gut phageome
    • 73 Manrique, P., Healthy human gut phageome. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 10400–10405.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 10400-10405
    • Manrique, P.1
  • 74
    • 84902517582 scopus 로고    scopus 로고
    • Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone
    • 74 Debarbieux, L., Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone. Curr. Opin. Microbiol. 20 (2014), 125–130.
    • (2014) Curr. Opin. Microbiol. , vol.20 , pp. 125-130
    • Debarbieux, L.1
  • 75
    • 84898731883 scopus 로고    scopus 로고
    • Bacteriophages: an underestimated role in human and animal health?
    • 75 De Paepe, M., Bacteriophages: an underestimated role in human and animal health?. Front. Cell. Infect. Microbiol., 4, 2014, 39.
    • (2014) Front. Cell. Infect. Microbiol. , vol.4 , pp. 39
    • De Paepe, M.1
  • 76
    • 84871860604 scopus 로고    scopus 로고
    • Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota
    • 76 Mills, S., Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4 (2013), 4–16.
    • (2013) Gut Microbes , vol.4 , pp. 4-16
    • Mills, S.1
  • 77
    • 84943365231 scopus 로고    scopus 로고
    • CRISPRs provide broad and robust protection to oral microbial flora of gingival health against bacteriophage challenge
    • 77 Zhou, H., CRISPRs provide broad and robust protection to oral microbial flora of gingival health against bacteriophage challenge. Protein Cell 6 (2015), 541–545.
    • (2015) Protein Cell , vol.6 , pp. 541-545
    • Zhou, H.1
  • 78
    • 84930208860 scopus 로고    scopus 로고
    • Global transcription of CRISPR loci in the human oral cavity
    • 78 Lum, A.G., Global transcription of CRISPR loci in the human oral cavity. BMC Genomics, 16, 2015, 401.
    • (2015) BMC Genomics , vol.16 , pp. 401
    • Lum, A.G.1
  • 79
    • 84990838988 scopus 로고    scopus 로고
    • Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
    • 79 Pawluk, A., Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol., 1, 2016, 16085.
    • (2016) Nat. Microbiol. , vol.1 , pp. 16085
    • Pawluk, A.1
  • 80
    • 84956842046 scopus 로고    scopus 로고
    • Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins
    • 80 Maxwell, K.L., Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLoS Pathog., 12, 2016, e1005282.
    • (2016) PLoS Pathog. , vol.12 , pp. e1005282
    • Maxwell, K.L.1
  • 81
    • 84978852403 scopus 로고    scopus 로고
    • The Janus-Face of bacteriophages across human body habitats
    • 81 Wahida, A., The Janus-Face of bacteriophages across human body habitats. PLoS Pathog., 12, 2016, e1005634.
    • (2016) PLoS Pathog. , vol.12 , pp. e1005634
    • Wahida, A.1
  • 82
    • 84885773922 scopus 로고    scopus 로고
    • Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1
    • 82 Betts, A., Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol. Appl. 6 (2013), 1054–1063.
    • (2013) Evol. Appl. , vol.6 , pp. 1054-1063
    • Betts, A.1
  • 83
    • 84961213584 scopus 로고    scopus 로고
    • Evolutionary rationale for phages as complements of antibiotics
    • 83 Torres-Barcelo, C., Hochberg, M.E., Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24 (2016), 249–256.
    • (2016) Trends Microbiol. , vol.24 , pp. 249-256
    • Torres-Barcelo, C.1    Hochberg, M.E.2
  • 84
    • 84941202270 scopus 로고    scopus 로고
    • Ecology of anti-biofilm agents II: bacteriophage exploitation and biocontrol of biofilm bacteria
    • 84 Abedon, S.T., Ecology of anti-biofilm agents II: bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals (Basel) 8 (2015), 559–589.
    • (2015) Pharmaceuticals (Basel) , vol.8 , pp. 559-589
    • Abedon, S.T.1
  • 85
    • 84948949452 scopus 로고    scopus 로고
    • Microbiology. Phage therapy redux – what is to be done?
    • 85 Young, R., Gill, J.J., Microbiology. Phage therapy redux – what is to be done?. Science 350 (2015), 1163–1164.
    • (2015) Science , vol.350 , pp. 1163-1164
    • Young, R.1    Gill, J.J.2
  • 86
    • 78149441739 scopus 로고    scopus 로고
    • Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum
    • 86 Machuca, P., Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl. Environ. Microbiol. 76 (2010), 7243–7250.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 7243-7250
    • Machuca, P.1
  • 87
    • 84903574945 scopus 로고    scopus 로고
    • Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque
    • 87 Aljarbou, A.N., Aljofan, M., Genotyping, morphology and molecular characteristics of a lytic phage of Neisseria strain obtained from infected human dental plaque. J. Microbiol. 52 (2014), 609–618.
    • (2014) J. Microbiol. , vol.52 , pp. 609-618
    • Aljarbou, A.N.1    Aljofan, M.2
  • 88
    • 84946905495 scopus 로고    scopus 로고
    • Isolation of a novel phage with activity against Streptococcus mutans biofilms
    • 88 Dalmasso, M., Isolation of a novel phage with activity against Streptococcus mutans biofilms. PLoS One, 10, 2015, e0138651.
    • (2015) PLoS One , vol.10 , pp. e0138651
    • Dalmasso, M.1
  • 89
    • 84951567009 scopus 로고    scopus 로고
    • Phenotypic and physiological characterization of the epibiotic interaction between TM7x and its basibiont Actinomyces
    • 89 Bor, B., Phenotypic and physiological characterization of the epibiotic interaction between TM7x and its basibiont Actinomyces. Microb. Ecol. 71 (2016), 243–255.
    • (2016) Microb. Ecol. , vol.71 , pp. 243-255
    • Bor, B.1
  • 90
    • 70049114998 scopus 로고    scopus 로고
    • Cross-kingdom interactions: Candida albicans and bacteria
    • 90 Shirtliff, M.E., Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299 (2009), 1–8.
    • (2009) FEMS Microbiol. Lett. , vol.299 , pp. 1-8
    • Shirtliff, M.E.1
  • 91
    • 84898941667 scopus 로고    scopus 로고
    • Candida and other fungal species: forgotten players of healthy oral microbiota
    • 91 Krom, B.P., Candida and other fungal species: forgotten players of healthy oral microbiota. J. Dent. Res. 93 (2014), 445–451.
    • (2014) J. Dent. Res. , vol.93 , pp. 445-451
    • Krom, B.P.1
  • 92
    • 84899480651 scopus 로고    scopus 로고
    • Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease
    • 92 Xu, H., et al. Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol. Oral Microbiol. 29 (2014), 99–116.
    • (2014) Mol. Oral Microbiol. , vol.29 , pp. 99-116
    • Xu, H.1
  • 93
    • 84875045260 scopus 로고    scopus 로고
    • Microbial interactions in building of communities
    • 93 Wright, C.J., Microbial interactions in building of communities. Mol. Oral Microbiol. 28 (2013), 83–101.
    • (2013) Mol. Oral Microbiol. , vol.28 , pp. 83-101
    • Wright, C.J.1
  • 94
    • 84960908013 scopus 로고    scopus 로고
    • Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle
    • Published online March 15, 2016
    • 94 Cavalcanti, I.M., et al. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle. Mol. Oral Microbiol., 2016, 10.1111/omi.12154 Published online March 15, 2016.
    • (2016) Mol. Oral Microbiol.
    • Cavalcanti, I.M.1
  • 95
    • 84963906410 scopus 로고    scopus 로고
    • Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material
    • 95 Cavalcanti, I.M., Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material. Pathog. Dis., 74, 2016, ftw002.
    • (2016) Pathog. Dis. , vol.74 , pp. ftw002
    • Cavalcanti, I.M.1
  • 96
    • 84985010093 scopus 로고    scopus 로고
    • Streptococcus oralis and Candida albicans synergistically activate mu-calpain to degrade E-cadherin from oral epithelial junctions
    • 96 Xu, H., Streptococcus oralis and Candida albicans synergistically activate mu-calpain to degrade E-cadherin from oral epithelial junctions. J. Infect. Dis. 214 (2016), 925–934.
    • (2016) J. Infect. Dis. , vol.214 , pp. 925-934
    • Xu, H.1
  • 97
    • 84857173874 scopus 로고    scopus 로고
    • Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model
    • 97 Diaz, P.I., et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect. Immun. 80 (2012), 620–632.
    • (2012) Infect. Immun. , vol.80 , pp. 620-632
    • Diaz, P.I.1
  • 98
    • 84898849465 scopus 로고    scopus 로고
    • Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo
    • 98 Falsetta, M.L., Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect. Immun. 82 (2014), 1968–1981.
    • (2014) Infect. Immun. , vol.82 , pp. 1968-1981
    • Falsetta, M.L.1
  • 99
    • 85015091762 scopus 로고    scopus 로고
    • Candida albicans in oral biofilms could prevent caries
    • 99 Willems, H.M., Candida albicans in oral biofilms could prevent caries. Pathog. Dis., 74, 2016, ftw039.
    • (2016) Pathog. Dis. , vol.74 , pp. ftw039
    • Willems, H.M.1
  • 100
    • 84994593739 scopus 로고    scopus 로고
    • Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent
    • 100 Arzmi, M.H., et al. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent. Med. Mycol. 54 (2016), 856–864.
    • (2016) Med. Mycol. , vol.54 , pp. 856-864
    • Arzmi, M.H.1
  • 101
    • 84908243042 scopus 로고    scopus 로고
    • Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans
    • 101 Sztajer, H., Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J. 8 (2014), 2256–2271.
    • (2014) ISME J. , vol.8 , pp. 2256-2271
    • Sztajer, H.1
  • 102
    • 84940044202 scopus 로고    scopus 로고
    • binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans
    • 102 Hwang, G., binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. J. Dent. Res. 94 (2015), 1310–1317.
    • (2015) J. Dent. Res. , vol.94 , pp. 1310-1317
    • Hwang, G.1
  • 103
    • 84919795322 scopus 로고    scopus 로고
    • Candida albicans and Streptococcus mutans: a potential synergistic alliance to cause virulent tooth decay in children
    • 103 Koo, H., Bowen, W.H., Candida albicans and Streptococcus mutans: a potential synergistic alliance to cause virulent tooth decay in children. Future Microbiol. 9 (2014), 1295–1297.
    • (2014) Future Microbiol. , vol.9 , pp. 1295-1297
    • Koo, H.1    Bowen, W.H.2
  • 104
    • 84986205236 scopus 로고    scopus 로고
    • Association of oral Candida albicans with severe early childhood caries – a pilot study
    • 104 Thomas, A., et al. Association of oral Candida albicans with severe early childhood caries – a pilot study. J. Clin. Diagn. Res. 10 (2016), ZC109–ZC112.
    • (2016) J. Clin. Diagn. Res. , vol.10 , pp. ZC109-ZC112
    • Thomas, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.