메뉴 건너뛰기




Volumn , Issue , 2014, Pages 185-206

Machine learning methodology in bioinformatics

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; BIOINFORMATICS; CLUSTER ANALYSIS; DISEASES; HIERARCHICAL SYSTEMS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 85009072850     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-642-30574-0_12     Document Type: Chapter
Times cited : (9)

References (69)
  • 4
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie, R. Tibshirani: Classification by pairwise coupling, Ann. Stat. 26, 451-471 (1998)
    • (1998) Ann. Stat. , vol.26 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 5
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T.G. Dietterich, G. Bakiri: Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. 2, 263-286 (1995)
    • (1995) J. Artif. Intell. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 6
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • E.L. Allwein, R.E. Schapire, Y. Singer: Reducing multiclass to binary: A unifying approach for margin classifiers, J. Mach. Learn. Res. 1, 133-141 (2000)
    • (2000) J. Mach. Learn. Res. , vol.1 , pp. 133-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 7
    • 26444573178 scopus 로고    scopus 로고
    • Which is the best multiclass SVM Method? An empirical study
    • Springer, Berlin, Heidelberg
    • K.-B. Duan, S.S. Keerthi: Which is the best multiclass SVM Method? An empirical study, Proc. 6th Int. Workshop Multiple Classifier Syst. (2005), Vol. 3541 (Springer, Berlin, Heidelberg 2006) pp. 278-285
    • (2006) Proc. 6th Int. Workshop Multiple Classifier Syst. (2005) , vol.3541 , pp. 278-285
    • Duan, K.-B.1    Keerthi, S.S.2
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, V. Vapnik: Support vector networks, Mach. Learn. 20, 273-297 (1995)
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularised likelihood methods
    • MIT Press, Cambridge
    • J. Platt: Probabilistic outputs for support vector machines and comparison to regularised likelihood methods, Adv. Large Margin Classifiers (MIT Press, Cambridge 1999) pp. 61-74
    • (1999) Adv. Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 11
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A.E. Hoerl, R. Kennard: Ridge regression: Biased estimation for nonorthogonal problems, Technometrics 12, 55-67 (1970)
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 17
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, B. Schölkopf: A tutorial on support vector regression, Stat. Comput. 14, 199-222 (2004)
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • I. Guyon, A. Elisseeff: An Introduction to Variable and Feature Selection, J. Mach. Learn. Res. 3, 1157-1182 (2003)
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 21
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity based classification
    • E. Pekalska, P. Paclik, R.P.W. Duin: A generalized kernel approach to dissimilarity based classification, J. Mach. Learn. Res. 2, 175-211 (2002)
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 175-211
    • Pekalska, E.1    Paclik, P.2    Duin, R.P.W.3
  • 23
    • 85162076368 scopus 로고    scopus 로고
    • Support vector machine classification with indefinite kernels
    • R. Luss, A. d’Aspremont: Support vector machine classification with indefinite kernels, Adv. Neural Inform. Proces. Syst. 20, 953-960 (2008)
    • (2008) Adv. Neural Inform. Proces. Syst. , vol.20 , pp. 953-960
    • Luss, R.1    D’Aspremont, A.2
  • 26
    • 0003307180 scopus 로고    scopus 로고
    • Estimating the generalization performance of an SVM efficiently
    • Morgan Kaufmann
    • T. Joachims: Estimating the generalization performance of an SVM efficiently, Proc. 17th Int. Conf. Mach. Learn. (Morgan Kaufmann, 2000) pp. 431-438
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 431-438
    • Joachims, T.1
  • 28
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • V. Vapnik, O. Chapelle: Bounds on error expectation for support vector machines, Neural Comput. 12, 2013-2036 (2000)
    • (2000) Neural Comput. , vol.12 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 29
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • P. Sollich: Bayesian methods for support vector machines: Evidence and predictive class probabilities, Mach. Learn. 46, 21-52 (2002)
    • (2002) Mach. Learn. , vol.46 , pp. 21-52
    • Sollich, P.1
  • 32
    • 9444285762 scopus 로고    scopus 로고
    • Fast kernels for inexact string matching
    • Springer, Berlin, Heidelberg
    • C. Leslie, R. Kuang: Fast kernels for inexact string matching, 16th Ann. Conf. Learning Theory 7th Kernel Workshop, Vol. 2777 (Springer, Berlin, Heidelberg 2003) pp. 114-128
    • (2003) 16th Ann. Conf. Learning Theory 7th Kernel Workshop , vol.2777 , pp. 114-128
    • Leslie, C.1    Kuang, R.2
  • 34
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete structures
    • Morgan Kaufmann, San Francisco
    • I.R. Kondor, J.D. Lafferty: Diffusion kernels on graphs and other discrete structures, Proc. Int. Conf. Mach. Learn. (Morgan Kaufmann, San Francisco, 2002) pp. 315-322
    • (2002) Proc. Int. Conf. Mach. Learn. , pp. 315-322
    • Kondor, I.R.1    Lafferty, J.D.2
  • 35
    • 9444285502 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • Springer, Berlin, Heidelberg
    • A.J. Smola, I.R. Kondor: Kernels and regularization on graphs, Conf. Learning Theory (COLT), Vol. 2777 (Springer, Berlin, Heidelberg 2003) pp. 144-158
    • (2003) Conf. Learning Theory (COLT) , vol.2777 , pp. 144-158
    • Smola, A.J.1    Kondor, I.R.2
  • 43
    • 70449364579 scopus 로고    scopus 로고
    • Enhanced protein fold recognition through a novel data integration approach
    • Y. Ying, K. Huang, C. Campbell: Enhanced protein fold recognition through a novel data integration approach, BMC Bioinf. 10, 267-285 (2009)
    • (2009) BMC Bioinf. , vol.10 , pp. 267-285
    • Ying, Y.1    Huang, K.2    Campbell, C.3
  • 44
    • 43349094032 scopus 로고    scopus 로고
    • Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
    • T. Damoulas, M. Girolami: Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection, Bioinformatics 24, 1264-1270 (2008)
    • (2008) Bioinformatics , vol.24 , pp. 1264-1270
    • Damoulas, T.1    Girolami, M.2
  • 47
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Natl. Acad. Sci. USA 96(12), 6745-6750 (1999)
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 51
    • 84864061876 scopus 로고    scopus 로고
    • A collapsed variational Bayesian inference algorithm for latent dirichlet allocation
    • Y.W. Teh, D. Newman, M. Welling: A collapsed variational Bayesian inference algorithm for latent dirichlet allocation, Adv. Neural Inform. Proces. Syst. 19, 1353-1360 (2006)
    • (2006) Adv. Neural Inform. Proces. Syst. , vol.19 , pp. 1353-1360
    • Teh, Y.W.1    Newman, D.2    Welling, M.3
  • 52
    • 70350336422 scopus 로고    scopus 로고
    • A marginalized variational Bayesian approach to the analysis of array data
    • Y. Ying, P. Li, C. Campbell: A marginalized variational Bayesian approach to the analysis of array data, BMC Proc. 2(4), S7 (2008)
    • (2008) BMC Proc. , vol.2 , Issue.4 , pp. S7
    • Ying, Y.1    Li, P.2    Campbell, C.3
  • 53
    • 84886992189 scopus 로고    scopus 로고
    • A variational approach to semi-supervised clustering
    • P. Li, Y. Ying, C. Campbell: A variational approach to semi-supervised clustering, Proc. ESANN2009 (2009) pp. 11-16
    • (2009) Proc. ESANN2009 , pp. 11-16
    • Li, P.1    Ying, Y.2    Campbell, C.3
  • 58
    • 33845451957 scopus 로고    scopus 로고
    • Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques
    • L. Carrivick, S. Rogers, J. Clark, C. Campbell, M. Girolami, C. Cooper: Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques, J. R. Soc. Interf. 3, 367-381 (2006)
    • (2006) J. R. Soc. Interf. , vol.3 , pp. 367-381
    • Carrivick, L.1    Rogers, S.2    Clark, J.3    Campbell, C.4    Girolami, M.5    Cooper, C.6
  • 63
    • 32344446687 scopus 로고
    • Understanding the Metropolis Hastings Algorithm
    • S. Chib, E. Greenberg: Understanding the Metropolis Hastings Algorithm, Am. Stat. 49(4), 327-335 (1995)
    • (1995) Am. Stat. , vol.49 , Issue.4 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 66
    • 34547844158 scopus 로고    scopus 로고
    • Supervised reconstruction of biological networks with local models
    • K. Bleakley, G. Biau, J.-P. Vert: Supervised reconstruction of biological networks with local models, Bioinformatics 23, i57-i65 (2007)
    • (2007) Bioinformatics , vol.23 , pp. i57-i65
    • Bleakley, K.1    Biau, G.2    Vert, J.-P.3
  • 67
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population MCMC
    • B. Calderhead, M. Girolami: Estimating Bayes factors via thermodynamic integration and population MCMC, Comput. Stat. Data Anal. 53, 4028-4045 (2009)
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 69
    • 85031009290 scopus 로고    scopus 로고
    • Available at
    • Cancer Genome Atlas: Available at http://cancergenome.nih.gov


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.