-
1
-
-
84982084465
-
Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature
-
Chen, M., et al. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature. Chemosphere 163 (2016), 217–226.
-
(2016)
Chemosphere
, vol.163
, pp. 217-226
-
-
Chen, M.1
-
2
-
-
84963701446
-
Biotransformation of multi-walled carbon nanotubes mediated by nanomaterial resistant soil bacteria
-
Chouhan, R.S., et al. Biotransformation of multi-walled carbon nanotubes mediated by nanomaterial resistant soil bacteria. Chem. Eng. J. 298 (2016), 1–9.
-
(2016)
Chem. Eng. J.
, vol.298
, pp. 1-9
-
-
Chouhan, R.S.1
-
3
-
-
84907075318
-
Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase
-
Lalwani, G., et al. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J. Mater. Chem. B 2 (2014), 6354–6362.
-
(2014)
J. Mater. Chem. B
, vol.2
, pp. 6354-6362
-
-
Lalwani, G.1
-
4
-
-
79955617211
-
The release of engineered nanomaterials to the environment
-
Gottschalk, F., Nowack, B., The release of engineered nanomaterials to the environment. J. Environ. Monitor. 13 (2011), 1145–1155.
-
(2011)
J. Environ. Monitor.
, vol.13
, pp. 1145-1155
-
-
Gottschalk, F.1
Nowack, B.2
-
5
-
-
84939569414
-
Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase
-
Kurapati, R., et al. Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase. Small 11 (2015), 3985–3994.
-
(2015)
Small
, vol.11
, pp. 3985-3994
-
-
Kurapati, R.1
-
6
-
-
84904913749
-
Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes
-
Berry, T.D., et al. Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes. Environ. Pollut. 193 (2014), 197–204.
-
(2014)
Environ. Pollut.
, vol.193
, pp. 197-204
-
-
Berry, T.D.1
-
7
-
-
84899865180
-
Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets
-
Wang, J., et al. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 48 (2014), 4817–4825.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 4817-4825
-
-
Wang, J.1
-
8
-
-
84906879081
-
Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation
-
Zhao, J., et al. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48 (2014), 9995–10009.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 9995-10009
-
-
Zhao, J.1
-
9
-
-
84899831396
-
Slow biotransformation of carbon nanotubes by horseradish peroxidase
-
Flores-Cervantes, D.X., et al. Slow biotransformation of carbon nanotubes by horseradish peroxidase. Environ. Sci. Technol. 48 (2014), 4826–4834.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 4826-4834
-
-
Flores-Cervantes, D.X.1
-
10
-
-
84879199673
-
Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment
-
Chowdhury, I., et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ. Sci. Technol. 47 (2013), 6288–6296.
-
(2013)
Environ. Sci. Technol.
, vol.47
, pp. 6288-6296
-
-
Chowdhury, I.1
-
11
-
-
84958793997
-
A comparative study on the enzymatic biodegradability of covalently functionalized double- and multi-walled carbon nanotubes
-
Modugno, G., et al. A comparative study on the enzymatic biodegradability of covalently functionalized double- and multi-walled carbon nanotubes. Carbon 100 (2016), 367–374.
-
(2016)
Carbon
, vol.100
, pp. 367-374
-
-
Modugno, G.1
-
12
-
-
34848828552
-
Reviewing the environmental and human health knowledge base of carbon nanotubes
-
Helland, A., et al. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115 (2007), 1125–1131.
-
(2007)
Environ. Health Perspect.
, vol.115
, pp. 1125-1131
-
-
Helland, A.1
-
13
-
-
84938864075
-
Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria
-
Liu, L., et al. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria. Nanoscale 7 (2015), 13619–13628.
-
(2015)
Nanoscale
, vol.7
, pp. 13619-13628
-
-
Liu, L.1
-
14
-
-
82355163543
-
Potential release pathways, environmental fate, and ecological risks of carbon nanotubes
-
Petersen, E.J., et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 45 (2011), 9837–9856.
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 9837-9856
-
-
Petersen, E.J.1
-
15
-
-
44449136364
-
Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing
-
Baun, A., et al. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17 (2008), 387–395.
-
(2008)
Ecotoxicology
, vol.17
, pp. 387-395
-
-
Baun, A.1
-
16
-
-
77955944437
-
Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells
-
Zhang, Y., et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4 (2010), 3181–3186.
-
(2010)
ACS Nano
, vol.4
, pp. 3181-3186
-
-
Zhang, Y.1
-
17
-
-
84861005940
-
Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress
-
Shvedova, A.A., et al. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol. Appl. Pharmacol. 261 (2012), 121–133.
-
(2012)
Toxicol. Appl. Pharmacol.
, vol.261
, pp. 121-133
-
-
Shvedova, A.A.1
-
18
-
-
84877626083
-
Graphene: promises, facts, opportunities, and challenges in nanomedicine
-
Mao, H.Y., et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 113 (2013), 3407–3424.
-
(2013)
Chem. Rev.
, vol.113
, pp. 3407-3424
-
-
Mao, H.Y.1
-
19
-
-
33645744010
-
A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks
-
Lam, C-W., et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 36 (2006), 189–217.
-
(2006)
Crit. Rev. Toxicol.
, vol.36
, pp. 189-217
-
-
Lam, C.-W.1
-
20
-
-
84877267166
-
Health and ecosystem risks of graphene
-
Hu, X., Zhou, Q., Health and ecosystem risks of graphene. Chem. Rev. 113 (2013), 3815–3835.
-
(2013)
Chem. Rev.
, vol.113
, pp. 3815-3835
-
-
Hu, X.1
Zhou, Q.2
-
21
-
-
84877711849
-
Graphene: safe or toxic? The two faces of the medal
-
Bianco, A., Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Ed. Engl. 52 (2013), 4986–4997.
-
(2013)
Angew. Chem. Int. Ed. Engl.
, vol.52
, pp. 4986-4997
-
-
Bianco, A.1
-
22
-
-
84943311454
-
Degradation-by-design: surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes
-
Sureshbabu, A.R., et al. Degradation-by-design: surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. Biomaterials 72 (2015), 20–28.
-
(2015)
Biomaterials
, vol.72
, pp. 20-28
-
-
Sureshbabu, A.R.1
-
23
-
-
84908566005
-
Microbial oxidation of graphite by Acidithiobacillus ferrooxidans CFMI-1
-
Zhu, C., et al. Microbial oxidation of graphite by Acidithiobacillus ferrooxidans CFMI-1. RSC Adv. 4 (2014), 55044–55047.
-
(2014)
RSC Adv.
, vol.4
, pp. 55044-55047
-
-
Zhu, C.1
-
24
-
-
84884904133
-
Degradation of multiwall carbon nanotubes by bacteria
-
Zhang, L., et al. Degradation of multiwall carbon nanotubes by bacteria. Environ. Pollut. 181 (2013), 335–339.
-
(2013)
Environ. Pollut.
, vol.181
, pp. 335-339
-
-
Zhang, L.1
-
25
-
-
84922554195
-
14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge
-
14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environ. Toxicol. Chem. 34 (2015), 247–251.
-
(2015)
Environ. Toxicol. Chem.
, vol.34
, pp. 247-251
-
-
Parks, A.N.1
-
26
-
-
84903518593
-
Oxidative biodegradation of single-walled carbon nanotubes by partially purified lignin peroxidase from Sparassis latifolia mushroom
-
Chandrasekaran, G., et al. Oxidative biodegradation of single-walled carbon nanotubes by partially purified lignin peroxidase from Sparassis latifolia mushroom. J. Ind. Eng. Chem. 20 (2014), 3367–3374.
-
(2014)
J. Ind. Eng. Chem.
, vol.20
, pp. 3367-3374
-
-
Chandrasekaran, G.1
-
27
-
-
80053323229
-
Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile
-
Chen, M., et al. Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile. PLoS One, 6, 2011, e25647.
-
(2011)
PLoS One
, vol.6
, pp. e25647
-
-
Chen, M.1
-
28
-
-
84934914263
-
Molecular basis of laccase bound to lignin: insight from comparative studies on the interaction of Trametes versicolor laccase with various lignin model compounds
-
Chen, M., et al. Molecular basis of laccase bound to lignin: insight from comparative studies on the interaction of Trametes versicolor laccase with various lignin model compounds. RSC Adv. 5 (2015), 52307–52313.
-
(2015)
RSC Adv.
, vol.5
, pp. 52307-52313
-
-
Chen, M.1
-
29
-
-
84939260277
-
Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs
-
Chen, M., et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv. 33 (2015), 745–755.
-
(2015)
Biotechnol. Adv.
, vol.33
, pp. 745-755
-
-
Chen, M.1
-
30
-
-
67649770254
-
Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review
-
Haritash, A., Kaushik, C., Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 169 (2009), 1–15.
-
(2009)
J. Hazard. Mater.
, vol.169
, pp. 1-15
-
-
Haritash, A.1
Kaushik, C.2
-
31
-
-
84874392259
-
Microbial decolorization and degradation of synthetic dyes: a review
-
Khan, R., et al. Microbial decolorization and degradation of synthetic dyes: a review. Rev. Environ. Sci. Biotechnol. 12 (2013), 75–97.
-
(2013)
Rev. Environ. Sci. Biotechnol.
, vol.12
, pp. 75-97
-
-
Khan, R.1
-
32
-
-
0034943792
-
Fungal decolorization of dye wastewaters: a review
-
Fu, Y., Viraraghavan, T., Fungal decolorization of dye wastewaters: a review. Bioresour. Technol. 79 (2001), 251–262.
-
(2001)
Bioresour. Technol.
, vol.79
, pp. 251-262
-
-
Fu, Y.1
Viraraghavan, T.2
-
33
-
-
84904438964
-
Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes
-
Zhang, C., et al. Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Environ. Sci. Technol. 48 (2014), 7918–7923.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 7918-7923
-
-
Zhang, C.1
-
34
-
-
84959303058
-
Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium
-
Xie, J., et al. Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium. Chemosphere 151 (2016), 324–331.
-
(2016)
Chemosphere
, vol.151
, pp. 324-331
-
-
Xie, J.1
-
35
-
-
77952289829
-
Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation
-
Kagan, V.E., et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5 (2010), 354–359.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 354-359
-
-
Kagan, V.E.1
-
36
-
-
80855147872
-
Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite
-
Vlasova, I., et al. Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite. Russ. J. Bioorg. Chem. 37 (2011), 453–463.
-
(2011)
Russ. J. Bioorg. Chem.
, vol.37
, pp. 453-463
-
-
Vlasova, I.1
-
37
-
-
84902519869
-
Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes
-
Lu, N., et al. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Chem. Res. Toxicol. 27 (2014), 1070–1077.
-
(2014)
Chem. Res. Toxicol.
, vol.27
, pp. 1070-1077
-
-
Lu, N.1
-
38
-
-
84911884731
-
Enzymatic 'stripping'and degradation of PEGylated carbon nanotubes
-
Bhattacharya, K., et al. Enzymatic 'stripping'and degradation of PEGylated carbon nanotubes. Nanoscale 6 (2014), 14686–14690.
-
(2014)
Nanoscale
, vol.6
, pp. 14686-14690
-
-
Bhattacharya, K.1
-
39
-
-
84876531486
-
Effect of antioxidants on enzyme-catalysed biodegradation of carbon nanotubes
-
Kotchey, G.P., et al. Effect of antioxidants on enzyme-catalysed biodegradation of carbon nanotubes. J. Mater. Chem. B 1 (2013), 302–309.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 302-309
-
-
Kotchey, G.P.1
-
40
-
-
84879786954
-
Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase
-
Andón, F.T., et al. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small 9 (2013), 2721–2729.
-
(2013)
Small
, vol.9
, pp. 2721-2729
-
-
Andón, F.T.1
-
41
-
-
84930210426
-
Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant
-
Bhattacharya, K., et al. Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant. Carbon 91 (2015), 506–517.
-
(2015)
Carbon
, vol.91
, pp. 506-517
-
-
Bhattacharya, K.1
-
42
-
-
72249121640
-
Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes
-
Allen, B.L., et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 131 (2009), 17194–17205.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 17194-17205
-
-
Allen, B.L.1
-
43
-
-
58149296511
-
Biodegradation of single-walled carbon nanotubes through enzymatic catalysis
-
Allen, B.L., et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 8 (2008), 3899–3903.
-
(2008)
Nano Lett.
, vol.8
, pp. 3899-3903
-
-
Allen, B.L.1
-
44
-
-
80052200967
-
Enzymatic degradation of multiwalled carbon nanotubes
-
Zhao, Y., et al. Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 115 (2011), 9536–9544.
-
(2011)
J. Phys. Chem. A
, vol.115
, pp. 9536-9544
-
-
Zhao, Y.1
-
45
-
-
84954289663
-
Probing molecular basis of single-walled carbon nanotube degradation and nondegradation by enzymes based on manganese peroxidase and lignin peroxidase
-
Chen, M., et al. Probing molecular basis of single-walled carbon nanotube degradation and nondegradation by enzymes based on manganese peroxidase and lignin peroxidase. RSC Adv. 6 (2016), 3592–3599.
-
(2016)
RSC Adv.
, vol.6
, pp. 3592-3599
-
-
Chen, M.1
-
46
-
-
84978322285
-
White graphene undergoes peroxidase degradation
-
Kurapati, R., et al. White graphene undergoes peroxidase degradation. Angew. Chem. Int. Ed. Engl. 55 (2016), 5506–5511.
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 5506-5511
-
-
Kurapati, R.1
-
47
-
-
79952922715
-
The enzymatic oxidation of graphene oxide
-
Kotchey, G.P., et al. The enzymatic oxidation of graphene oxide. ACS Nano 5 (2011), 2098–2108.
-
(2011)
ACS Nano
, vol.5
, pp. 2098-2108
-
-
Kotchey, G.P.1
-
48
-
-
84898641596
-
Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene
-
Li, Y., et al. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small 10 (2014), 1544–1554.
-
(2014)
Small
, vol.10
, pp. 1544-1554
-
-
Li, Y.1
-
49
-
-
84940378171
-
Reduced graphene oxide enhances horseradish peroxidase stability by serving as radical scavenger and redox mediator
-
Zhang, C., et al. Reduced graphene oxide enhances horseradish peroxidase stability by serving as radical scavenger and redox mediator. Carbon 94 (2015), 531–538.
-
(2015)
Carbon
, vol.94
, pp. 531-538
-
-
Zhang, C.1
-
50
-
-
80052552513
-
Making carbon nanotubes biocompatible and biodegradable
-
Bianco, A., et al. Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. 47 (2011), 10182–10188.
-
(2011)
Chem. Commun.
, vol.47
, pp. 10182-10188
-
-
Bianco, A.1
-
51
-
-
84888868174
-
Endowing carbon nanotubes with biological and biomedical properties by chemical modifications
-
Battigelli, A., et al. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv. Drug Deliv. Rev. 65 (2013), 1899–1920.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, pp. 1899-1920
-
-
Battigelli, A.1
-
52
-
-
28844459059
-
Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes
-
Li, W., et al. Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth. Met. 155 (2005), 509–515.
-
(2005)
Synth. Met.
, vol.155
, pp. 509-515
-
-
Li, W.1
-
53
-
-
0036919989
-
Chemistry of single-walled carbon nanotubes
-
Niyogi, S., et al. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35 (2002), 1105–1113.
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 1105-1113
-
-
Niyogi, S.1
-
54
-
-
84929438954
-
Diels–Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability
-
Mata, D., et al. Diels–Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability. Nanoscale 7 (2015), 9238–9251.
-
(2015)
Nanoscale
, vol.7
, pp. 9238-9251
-
-
Mata, D.1
-
55
-
-
77949441632
-
Perspectives on carbon nanotubes and graphene Raman spectroscopy
-
Dresselhaus, M.S., et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10 (2010), 751–758.
-
(2010)
Nano Lett.
, vol.10
, pp. 751-758
-
-
Dresselhaus, M.S.1
-
56
-
-
0029878720
-
VMD: visual molecular dynamics
-
Humphrey, W., et al. VMD: visual molecular dynamics. J. Mol. Graph. 14 (1996), 33–38.
-
(1996)
J. Mol. Graph.
, vol.14
, pp. 33-38
-
-
Humphrey, W.1
-
57
-
-
84946045336
-
The RCSB Protein Data Bank: views of structural biology for basic and applied research and education
-
Rose, P.W., et al. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res. 43 (2015), D345–D356.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D345-D356
-
-
Rose, P.W.1
-
58
-
-
84904815625
-
SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
-
Biasini, M., et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42 (2014), W252–W258.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. W252-W258
-
-
Biasini, M.1
-
59
-
-
84964039252
-
Homology modeling and molecular dynamics study on Schwanniomyces occidentalis alpha-amylase
-
Published online April 7, 2016
-
Sefidbakht, Y., et al. Homology modeling and molecular dynamics study on Schwanniomyces occidentalis alpha-amylase. J. Biomol. Struct. Dyn., 2016 Published online April 7, 2016 http://dx.doi.org/10.1080/07391102.2016.1154892.
-
(2016)
J. Biomol. Struct. Dyn.
-
-
Sefidbakht, Y.1
-
60
-
-
43749107283
-
Comparative protein structure modeling using MODELLER
-
Unit 5.6
-
Eswar, N., et al. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 5, 2006 Unit 5.6.
-
(2006)
Curr. Protoc. Bioinformatics
, vol.5
-
-
Eswar, N.1
-
61
-
-
0033873929
-
Comparative protein structure modeling of genes and genomes
-
Martí-Renom, M.A., et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29 (2000), 291–325.
-
(2000)
Annu. Rev. Biophys. Biomol. Struct.
, vol.29
, pp. 291-325
-
-
Martí-Renom, M.A.1
-
62
-
-
84875480305
-
Latest developments in molecular docking: 2010-2011 in review
-
Yuriev, E., Ramsland, P.A., Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit. 26 (2013), 215–239.
-
(2013)
J. Mol. Recognit.
, vol.26
, pp. 215-239
-
-
Yuriev, E.1
Ramsland, P.A.2
-
63
-
-
21644476468
-
PatchDock and SymmDock: servers for rigid and symmetric docking
-
Schneidman-Duhovny, D., et al. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33 (2005), W363–W367.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. W363-W367
-
-
Schneidman-Duhovny, D.1
-
64
-
-
48449092207
-
FireDock: a web server for fast interaction refinement in molecular docking
-
Mashiach, E., et al. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 36 (2008), W229–W232.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. W229-W232
-
-
Mashiach, E.1
-
65
-
-
84900492937
-
Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments
-
Liu, W-W., et al. Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J. Ind. Eng. Chem. 20 (2014), 1171–1185.
-
(2014)
J. Ind. Eng. Chem.
, vol.20
, pp. 1171-1185
-
-
Liu, W.-W.1
-
66
-
-
46849121980
-
Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity
-
Huang, D.L., et al. Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ. Sci. Technol. 42 (2008), 4946–4951.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 4946-4951
-
-
Huang, D.L.1
-
67
-
-
75549089640
-
The University of Minnesota Biocatalysis/Biodegradation Database: improving public access
-
Gao, J., et al. The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res. 38 (2010), D488–D491.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. D488-D491
-
-
Gao, J.1
-
68
-
-
77950941174
-
Synthesis of graphene and its applications: a review
-
Choi, W., et al. Synthesis of graphene and its applications: a review. Crit. Rev. Solid State 35 (2010), 52–71.
-
(2010)
Crit. Rev. Solid State
, vol.35
, pp. 52-71
-
-
Choi, W.1
-
69
-
-
84883596929
-
Review of chemical vapor deposition of graphene and related applications
-
Zhang, Y., et al. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46 (2013), 2329–2339.
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 2329-2339
-
-
Zhang, Y.1
-
70
-
-
84869194037
-
Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications
-
Georgakilas, V., et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112 (2012), 6156–6214.
-
(2012)
Chem. Rev.
, vol.112
, pp. 6156-6214
-
-
Georgakilas, V.1
-
71
-
-
84873808704
-
Carbon nanotubes: present and future commercial applications
-
De Volder, M.F., et al. Carbon nanotubes: present and future commercial applications. Science 339 (2013), 535–539.
-
(2013)
Science
, vol.339
, pp. 535-539
-
-
De Volder, M.F.1
-
72
-
-
84878148759
-
Graphene-related nanomaterials: tuning properties by functionalization
-
Tang, Q., et al. Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5 (2013), 4541–4583.
-
(2013)
Nanoscale
, vol.5
, pp. 4541-4583
-
-
Tang, Q.1
-
73
-
-
61649117719
-
Tuning the photophysical properties of soluble single-wall carbon nanotube derivatives by co-functionalization with organic molecules
-
Cordella, F., et al. Tuning the photophysical properties of soluble single-wall carbon nanotube derivatives by co-functionalization with organic molecules. Carbon 47 (2009), 1264–1269.
-
(2009)
Carbon
, vol.47
, pp. 1264-1269
-
-
Cordella, F.1
-
74
-
-
0036919988
-
Defects in carbon nanotubes
-
Charlier, J-C., Defects in carbon nanotubes. Acc. Chem. Res. 35 (2002), 1063–1069.
-
(2002)
Acc. Chem. Res.
, vol.35
, pp. 1063-1069
-
-
Charlier, J.-C.1
-
75
-
-
84859068523
-
Defects and impurities in graphene-like materials
-
Araujo, P.T., et al. Defects and impurities in graphene-like materials. Mater. Today 15 (2012), 98–109.
-
(2012)
Mater. Today
, vol.15
, pp. 98-109
-
-
Araujo, P.T.1
-
76
-
-
79952648265
-
Oxidative biodegradation of single-and multi-walled carbon nanotubes
-
Russier, J., et al. Oxidative biodegradation of single-and multi-walled carbon nanotubes. Nanoscale 3 (2011), 893–896.
-
(2011)
Nanoscale
, vol.3
, pp. 893-896
-
-
Russier, J.1
-
77
-
-
84960425843
-
Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review
-
Ema, M., et al. Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology 10 (2016), 391–412.
-
(2016)
Nanotoxicology
, vol.10
, pp. 391-412
-
-
Ema, M.1
-
78
-
-
84869095951
-
Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage
-
Begum, P., et al. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl. Surf. Sci. 262 (2012), 120–124.
-
(2012)
Appl. Surf. Sci.
, vol.262
, pp. 120-124
-
-
Begum, P.1
-
79
-
-
84941192722
-
Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review
-
Simonin, M., Richaume, A., Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ. Sci. Pollut. Res. 22 (2015), 13710–13723.
-
(2015)
Environ. Sci. Pollut. Res.
, vol.22
, pp. 13710-13723
-
-
Simonin, M.1
Richaume, A.2
-
80
-
-
77952551886
-
Ultrahigh (0.93 Å) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism
-
Sundaramoorthy, M., et al. Ultrahigh (0.93 Å) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J. Inorg. Biochem. 104 (2010), 683–690.
-
(2010)
J. Inorg. Biochem.
, vol.104
, pp. 683-690
-
-
Sundaramoorthy, M.1
|