메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data

Author keywords

Drug drug interaction; Ensemble learning; Missing link prediction; Random walk

Indexed keywords

DRUG PRODUCTS; FORECASTING; PERTURBATION TECHNIQUES; RANDOM PROCESSES;

EID: 85008199754     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1415-9     Document Type: Article
Times cited : (268)

References (41)
  • 1
    • 77949300917 scopus 로고    scopus 로고
    • Drug interaction studies on new drug applications: current situations and regulatory views in Japan
    • Nagai N. Drug interaction studies on new drug applications: current situations and regulatory views in Japan. Drug Metab Pharmacokin. 2010;25(1):3-15.
    • (2010) Drug Metab Pharmacokin , vol.25 , Issue.1 , pp. 3-15
    • Nagai, N.1
  • 2
    • 84874662621 scopus 로고    scopus 로고
    • Informatics confronts drug-drug interactions
    • Percha B, Altman RB. Informatics confronts drug-drug interactions. Trends Pharmacol Sci. 2013;34(3):178-84.
    • (2013) Trends Pharmacol Sci , vol.34 , Issue.3 , pp. 178-184
    • Percha, B.1    Altman, R.B.2
  • 4
    • 84903618121 scopus 로고    scopus 로고
    • How far should we go Perspective of drug-drug interaction studies in drug development
    • Kusuhara H. How far should we go Perspective of drug-drug interaction studies in drug development. Drug Metab Pharmacokin. 2014;29(3):227-8.
    • (2014) Drug Metab Pharmacokin , vol.29 , Issue.3 , pp. 227-228
    • Kusuhara, H.1
  • 5
    • 48049111575 scopus 로고    scopus 로고
    • A statistical methodology for drug-drug interaction surveillance
    • Noren GN, Sundberg R, Bate A, Edwards IR. A statistical methodology for drug-drug interaction surveillance. Stat Med. 2008;27(16):3057-70.
    • (2008) Stat Med , vol.27 , Issue.16 , pp. 3057-3070
    • Noren, G.N.1    Sundberg, R.2    Bate, A.3    Edwards, I.R.4
  • 7
    • 84866067701 scopus 로고    scopus 로고
    • Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions
    • Duke JD, Han X, Wang Z, Subhadarshini A, Karnik SD, Li X, Hall SD, Jin Y, Callaghan JT, Overhage MJ, et al. Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol. 2012;8(8):e1002614.
    • (2012) PLoS Comput Biol , vol.8 , Issue.8
    • Duke, J.D.1    Han, X.2    Wang, Z.3    Subhadarshini, A.4    Karnik, S.D.5    Li, X.6    Hall, S.D.7    Jin, Y.8    Callaghan, J.T.9    Overhage, M.J.10
  • 8
    • 84856805878 scopus 로고    scopus 로고
    • A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports
    • Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc. 2012;19(1):79-85.
    • (2012) J Am Med Inform Assoc , vol.19 , Issue.1 , pp. 79-85
    • Tatonetti, N.P.1    Fernald, G.H.2    Altman, R.B.3
  • 9
    • 85008208563 scopus 로고    scopus 로고
    • Extracting drug-drug interaction from the biomedical literature using a stacked generalization-based approach
    • He L, Yang Z, Zhao Z, Lin H, Li Y. Extracting drug-drug interaction from the biomedical literature using a stacked generalization-based approach. 2013.
    • (2013)
    • He, L.1    Yang, Z.2    Zhao, Z.3    Lin, H.4    Li, Y.5
  • 12
    • 67849104638 scopus 로고    scopus 로고
    • PubChem: a public information system for analyzing bioactivities of small molecules
    • Web Server issue
    • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37((Web Server issue):W623-33.
    • (2009) Nucleic Acids Res , vol.37 , pp. W623-W633
    • Wang, Y.1    Xiao, J.2    Suzek, T.O.3    Zhang, J.4    Wang, J.5    Bryant, S.H.6
  • 13
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • Database issue
    • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355-60.
    • (2010) Nucleic Acids Res , vol.38 , pp. D355-D360
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5
  • 15
    • 78649633211 scopus 로고    scopus 로고
    • PubChem as a public resource for drug discovery
    • Li Q, Cheng T, Wang Y, Bryant SH. PubChem as a public resource for drug discovery. Drug Discov Today. 2010;15(23-24):1052-7.
    • (2010) Drug Discov Today , vol.15 , Issue.23-24 , pp. 1052-1057
    • Li, Q.1    Cheng, T.2    Wang, Y.3    Bryant, S.H.4
  • 18
    • 84864231551 scopus 로고    scopus 로고
    • INDI: a computational framework for inferring drug interactions and their associated recommendations
    • Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R. INDI: a computational framework for inferring drug interactions and their associated recommendations. Mol Syst Biol. 2012;8:592.
    • (2012) Mol Syst Biol , vol.8 , pp. 592
    • Gottlieb, A.1    Stein, G.Y.2    Oron, Y.3    Ruppin, E.4    Sharan, R.5
  • 20
    • 84874766004 scopus 로고    scopus 로고
    • Detection of drug-drug interactions by modeling interaction profile fingerprints
    • Vilar S, Uriarte E, Santana L, Tatonetti NP, Friedman C. Detection of drug-drug interactions by modeling interaction profile fingerprints. PLoS One. 2013;8(3):e58321.
    • (2013) PLoS One , vol.8 , Issue.3
    • Vilar, S.1    Uriarte, E.2    Santana, L.3    Tatonetti, N.P.4    Friedman, C.5
  • 22
    • 84948955378 scopus 로고    scopus 로고
    • Predicting pharmacodynamic drug-drug interactions through signaling propagation interference on protein-protein interaction networks
    • Park K, Kim D, Ha S, Lee D. Predicting pharmacodynamic drug-drug interactions through signaling propagation interference on protein-protein interaction networks. PLoS One. 2015;10(10):e0140816.
    • (2015) PLoS One , vol.10 , Issue.10
    • Park, K.1    Kim, D.2    Ha, S.3    Lee, D.4
  • 23
    • 84937468928 scopus 로고    scopus 로고
    • Label propagation prediction of drug-drug interactions based on clinical side effects
    • Zhang P, Wang F, Hu J, Sorrentino R. Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep. 2015;5:12339.
    • (2015) Sci Rep , vol.5 , pp. 12339
    • Zhang, P.1    Wang, F.2    Hu, J.3    Sorrentino, R.4
  • 24
    • 84876431695 scopus 로고    scopus 로고
    • Pharmacointeraction network models predict unknown drug-drug interactions
    • Cami A, Manzi S, Arnold A, Reis BY. Pharmacointeraction network models predict unknown drug-drug interactions. PLoS One. 2013;8(4):e61468.
    • (2013) PLoS One , vol.8 , Issue.4
    • Cami, A.1    Manzi, S.2    Arnold, A.3    Reis, B.Y.4
  • 25
    • 84908145917 scopus 로고    scopus 로고
    • Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties
    • Cheng F, Zhao Z. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inform Assoc. 2014;21(e2):e278-86.
    • (2014) J Am Med Inform Assoc , vol.21 , Issue.2 , pp. 278-286
    • Cheng, F.1    Zhao, Z.2
  • 26
    • 82355160710 scopus 로고    scopus 로고
    • Network-based analysis and characterization of adverse drug-drug interactions
    • Takarabe M, Shigemizu D, Kotera M, Goto S, Kanehisa M. Network-based analysis and characterization of adverse drug-drug interactions. J Chem Inf Model. 2011;51(11):2977-85.
    • (2011) J Chem Inf Model , vol.51 , Issue.11 , pp. 2977-2985
    • Takarabe, M.1    Shigemizu, D.2    Kotera, M.3    Goto, S.4    Kanehisa, M.5
  • 27
    • 84875992866 scopus 로고    scopus 로고
    • Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network
    • Huang J, Niu C, Green CD, Yang L, Mei H, Han JD. Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLoS Comput Biol. 2013;9(3):e1002998.
    • (2013) PLoS Comput Biol , vol.9 , Issue.3
    • Huang, J.1    Niu, C.2    Green, C.D.3    Yang, L.4    Mei, H.5    Han, J.D.6
  • 29
    • 84959346216 scopus 로고    scopus 로고
    • Predicting potential side effects of drugs by recommender methods and ensemble learning
    • Zhang W, Zou H, Luo L, Liu Q, Wu W, Xiao W. Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing. 2016;173:979-87.
    • (2016) Neurocomputing , vol.173 , pp. 979-987
    • Zhang, W.1    Zou, H.2    Luo, L.3    Liu, Q.4    Wu, W.5    Xiao, W.6
  • 31
    • 84858329412 scopus 로고    scopus 로고
    • Data-driven prediction of drug effects and interactions
    • Tatonetti NP, Ye PP, Daneshjou R, Altman RB. Data-driven prediction of drug effects and interactions. Sci Transl Med. 2012;4(125):125ra131.
    • (2012) Sci Transl Med , vol.4 , Issue.125 , pp. 125-131
    • Tatonetti, N.P.1    Ye, P.P.2    Daneshjou, R.3    Altman, R.B.4
  • 33
    • 78751613300 scopus 로고    scopus 로고
    • Link prediction in complex networks: a survey
    • Lü L, Zhou T. Link prediction in complex networks: a survey. Physica A. 2011;390(6):1150-70.
    • (2011) Physica A , vol.390 , Issue.6 , pp. 1150-1170
    • Lü, L.1    Zhou, T.2
  • 34
    • 84956762490 scopus 로고    scopus 로고
    • Advances in collaborative filtering
    • New York: Springer
    • Koren Y, Bell R. Advances in collaborative filtering. In: Recommender Systems Handbook. New York: Springer; 2015. p. 77-118.
    • (2015) Recommender Systems Handbook , pp. 77-118
    • Koren, Y.1    Bell, R.2
  • 35
    • 79051470531 scopus 로고    scopus 로고
    • Link prediction based on local random walk
    • Liu W, Lü L. Link prediction based on local random walk. EPL (Europhysics Letters). 2010;89(5):58007.
    • (2010) EPL (Europhysics Letters) , vol.89 , Issue.5 , pp. 58007
    • Liu, W.1    Lü, L.2
  • 37
    • 84862215494 scopus 로고    scopus 로고
    • Drug-target interaction prediction by random walk on the heterogeneous network
    • Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol BioSyst. 2012;8(7):1970-8.
    • (2012) Mol BioSyst , vol.8 , Issue.7 , pp. 1970-1978
    • Chen, X.1    Liu, M.X.2    Yan, G.Y.3
  • 38
    • 84939224628 scopus 로고    scopus 로고
    • Optimizing drug-target interaction prediction based on random walk on heterogeneous networks
    • Seal A, Ahn YY, Wild DJ. Optimizing drug-target interaction prediction based on random walk on heterogeneous networks. J Cheminf. 2015;7:40.
    • (2015) J Cheminf , vol.7 , pp. 40
    • Seal, A.1    Ahn, Y.Y.2    Wild, D.J.3
  • 39
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag. 2006;6(3):21-45.
    • (2006) IEEE Circuits Syst Mag , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 40
    • 84865183573 scopus 로고    scopus 로고
    • Computational prediction of conformational B-cell epitopes from antigen primary structures by ensemble learning
    • Zhang W, Niu Y, Xiong Y, Zhao M, Yu R, Liu J. Computational prediction of conformational B-cell epitopes from antigen primary structures by ensemble learning. PLoS One. 2012;7(8):e43575.
    • (2012) PLoS One , vol.7 , Issue.8
    • Zhang, W.1    Niu, Y.2    Xiong, Y.3    Zhao, M.4    Yu, R.5    Liu, J.6
  • 41
    • 84946416532 scopus 로고    scopus 로고
    • Predicting drug side effects by multi-label learning and ensemble learning
    • Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinf. 2015;16:365.
    • (2015) BMC Bioinf , vol.16 , pp. 365
    • Zhang, W.1    Liu, F.2    Luo, L.3    Zhang, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.