-
1
-
-
12244275962
-
A“TiVo: Making Show Recommendations Using a Distributed Collaborative Filtering Architecture”, Proc. 10th ACM SIGKDD
-
Ali, K., and van Stam, W., “TiVo: Making Show Recommendations Using a Distributed Collaborative Filtering Architecture”, Proc. 10th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining,. 394–401, 2004.
-
(2004)
Int. Conference on Knowledge Discovery and Data Mining
, pp. 394-401
-
-
Ali, K.1
Stam, V.W.2
-
2
-
-
49749086487
-
Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights
-
Bell, R., and Koren, Y., “Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights”, IEEE International Conference on Data Mining (ICDM’07),. 43–52, 2007.
-
(2007)
IEEE International Conference on Data Mining (ICDM’07)
, pp. 43-52
-
-
Bell, R.1
Koren, Y.2
-
3
-
-
57349146373
-
Lessons from the Netflix Prize Challenge
-
Bell, R., and Koren, Y., “Lessons from the Netflix Prize Challenge”, SIGKDD Explorations 9 (2007), 75–79.
-
(2007)
SIGKDD Explorations
, vol.9
, pp. 75-79
-
-
Bell, R.1
Koren, Y.2
-
4
-
-
36849079891
-
“Modeling Relationships at Multiple Scales to Improve Accuracy of Large Recommender Systems
-
Bell, R.M., Koren, Y., and Volinsky, C., “Modeling Relationships at Multiple Scales to Improve Accuracy of Large Recommender Systems”, Proc. 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007
-
(2007)
Proc. 13Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
-
Bell, R.M.1
Koren, Y.2
Volinsky, C.3
-
7
-
-
0141607824
-
Latent Dirichlet Allocation
-
Blei, D., Ng, A., and Jordan, M., “Latent Dirichlet Allocation”, Journal of Machine Learning Research 3 (2003), 993–1022.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 993-1022
-
-
Blei, D.1
Ng, A.2
Jordan, M.3
-
8
-
-
35348914807
-
Google News Personalization: Scalable Online Collaborative Filtering
-
Das, A., Datar, M., Garg, A., and Rajaram, S., “Google News Personalization: Scalable Online Collaborative Filtering”, WWW’07, pp. 271–280, 2007.
-
(2007)
WWW’07
, pp. 271-280
-
-
Das, A.1
Datar, M.2
Garg, A.3
Rajaram, S.4
-
9
-
-
84989525001
-
Indexing by Latent Semantic Analysis
-
Deerwester, S., Dumais, S., Furnas, G.W., Landauer, T.K. and Harshman, R., “Indexing by Latent Semantic Analysis”, Journal of the Society for Information Science 41 (1990), 391–407.
-
(1990)
Journal of the Society for Information Science
, vol.41
, pp. 391-407
-
-
Deerwester, S.1
Dumais, S.2
Furnas, G.W.3
Landauer, T.K.4
Harshman, R.5
-
11
-
-
67649946286
-
-
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., Bayesian Data Analysis, Chapman and Hall, 1995.
-
(1995)
Bayesian Data Analysis, Chapman and Hall
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
12
-
-
0034446870
-
“Explaining Collaborative Filtering Recommendations
-
Herlocker, J.L., Konstan, J.A., and Riedl, J., “Explaining Collaborative Filtering Recommendations”, Proc. ACM Conference on Computer Supported Cooperative Work, 241–250, 2000.
-
(2000)
Proc. ACM Conference on Computer Supported Cooperative Work
, pp. 241-250
-
-
Herlocker, J.L.1
Konstan, J.A.2
Riedl, J.3
-
13
-
-
85015559680
-
An Algorithmic Framework for Performing Collaborative Filtering
-
Herlocker, J.L., Konstan, J.A., Borchers, A., and Riedl, J., “An Algorithmic Framework for Performing Collaborative Filtering”, Proc. 22nd ACM SIGIR Conference on Information Retrieval, 230–237, 1999.
-
(1999)
Proc. 22Nd ACM SIGIR Conference on Information Retrieval
, pp. 230-237
-
-
Herlocker, J.L.1
Konstan, J.A.2
Borchers, A.3
Riedl, J.4
-
14
-
-
3042742744
-
Latent Semantic Models for Collaborative Filtering
-
Hofmann, T., “Latent Semantic Models for Collaborative Filtering”, ACM Transactions on Information Systems 22 (2004), 89–115.
-
(2004)
ACM Transactions on Information Systems
, vol.22
, pp. 89-115
-
-
Hofmann, T.1
-
15
-
-
17844390666
-
Collaborative Filtering Based on Iterative Principal Component Analysis
-
Kim, D., and Yum, B., “Collaborative Filtering Based on Iterative Principal Component Analysis”, Expert Systems with Applications 28 (2005), 823–830.
-
(2005)
Expert Systems with Applications
, vol.28
, pp. 823-830
-
-
Kim, D.1
Yum, B.2
-
17
-
-
77955644905
-
Factor in the Neighbors: Scalable and Accurate Collaborative Filtering
-
Koren, Y., “Factor in the Neighbors: Scalable and Accurate Collaborative Filtering ”, ACM Transactions on Knowledge Discovery from Data (TKDD),4(2010):1–24.
-
(2010)
ACM Transactions on Knowledge Discovery from Data (TKDD)
, vol.4
, pp. 1-24
-
-
Koren, Y.1
-
18
-
-
0037252945
-
Amazon.Com Recommendations: Item-to-Item Collaborative Filtering
-
Linden, G., Smith, B., and York, J., “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, IEEE Internet Computing 7 (2003), 76–80.
-
(2003)
IEEE Internet Computing
, vol.7
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
19
-
-
58149183811
-
“Collaborative Filtering and the Missing at Random Assumption
-
Marlin, B.M., Zemel, R.S., Roweis, S., and Slaney, M., “Collaborative Filtering and the Missing at Random Assumption", Proc. 23rd Conference on Uncertainty in Artificial Intelligence, 2007.
-
(2007)
Proc. 23Rd Conference on Uncertainty in Artificial Intelligence
-
-
Marlin, B.M.1
Zemel, R.S.2
Roweis, S.3
Slaney, M.4
-
20
-
-
0002822084
-
Implicit Feedback for Recommender Systems
-
Oard, D.W., and Kim, J., “Implicit Feedback for Recommender Systems”, Proc. 5th DELOS Workshop on Filtering and Collaborative Filtering, pp. 31–36, 1998.
-
(1998)
Proc. 5Th DELOS Workshop on Filtering and Collaborative Filtering
, pp. 31-36
-
-
Oard, D.W.1
Kim, J.2
-
21
-
-
57949113756
-
“Improving Regularized Singular Value Decomposition for Collaborative Filtering
-
Paterek, A., “Improving Regularized Singular Value Decomposition for Collaborative Filtering”, Proc. KDD Cup and Workshop, 2007.
-
(2007)
Proc. KDD Cup and Workshop
-
-
Paterek, A.1
-
22
-
-
34547983260
-
Restricted Boltzmann Machines for Collaborative Filtering
-
Salakhutdinov, R., Mnih, A., and Hinton, G., “Restricted Boltzmann Machines for Collaborative Filtering”, Proc. 24th Annual International Conference on Machine Learning, pp. 791–798, 2007.
-
(2007)
Proc. 24Th Annual International Conference on Machine Learning
, pp. 791-798
-
-
Salakhutdinov, R.1
Mnih, A.2
Hinton, G.3
-
23
-
-
85161989354
-
Probabilistic Matrix Factorization
-
Salakhutdinov, R., and Mnih, A., “Probabilistic Matrix Factorization”, Advances in Neural Information Processing Systems 20 (NIPS’07), pp. 1257–1264, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1257-1264
-
-
Salakhutdinov, R.1
Mnih, A.2
-
24
-
-
3042788736
-
Application of Dimensionality Reduction in Recommender System – A Case Study
-
Sarwar, B.M., Karypis, G., Konstan, J.A., and Riedl, J., “Application of Dimensionality Reduction in Recommender System – A Case Study”, WEBKDD’2000
-
(2000)
WEBKDD
-
-
Sarwar, B.M.1
Karypis, G.2
Konstan, J.A.3
Riedl, J.4
-
25
-
-
85052617391
-
Item-based Collaborative Filtering Recommendation Algorithms
-
Sarwar, B., Karypis, G., Konstan, J., and Riedl, J., “Item-based Collaborative Filtering Recommendation Algorithms”, Proc. 10th International Conference on the World Wide Web,. 285–295, 2001.
-
(2001)
Proc. 10Th International Conference on the World Wide Web
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
-
26
-
-
48349120710
-
Major Components of the Gravity Recommendation System
-
Takács G., Pilászy I., Németh B. and Tikk, D., “Major Components of the Gravity Recommendation System”, SIGKDD Explorations 9 (2007), 80–84.
-
(2007)
SIGKDD Explorations
, vol.9
, pp. 80-84
-
-
Takács, G.1
Pilászy, I.2
Németh, B.3
Tikk, D.4
-
27
-
-
63449123891
-
Matrix Factorization and Neighbor based Algorithms for the Netflix Prize Problem
-
Takács G., Pilászy I., Németh B. and Tikk, D., “Matrix Factorization and Neighbor based Algorithms for the Netflix Prize Problem”, Proc. 2nd ACM conference on Recommender Systems (RecSys’08), pp. 267–274, 2008.
-
(2008)
Proc. 2Nd ACM Conference on Recommender Systems (RecSys’08)
, pp. 267-274
-
-
Takács, G.1
Pilászy, I.2
Németh, B.3
Tikk, D.4
-
29
-
-
77951128611
-
Improved Neighborhood-Based Algorithms for Large-Scale Recommender Systems
-
Toscher, A., Jahrer, M., and Legenstein, R., “Improved Neighborhood-Based Algorithms for Large-Scale Recommender Systems”, KDD’08 Workshop on Large Scale Recommenders Systems and the Netflix Prize, 2008.
-
(2008)
KDD’08 Workshop on Large Scale Recommenders Systems and the Netflix Prize
-
-
Toscher, A.1
Jahrer, M.2
Legenstein, R.3
-
30
-
-
33750345680
-
Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion
-
Wang, J., de Vries, A.P., and Reinders, M.J.T, “Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion”, Proc. 29th ACM SIGIR Conference on Information Retrieval,. 501–508, 2006.
-
(2006)
Proc. 29Th ACM SIGIR Conference on Information Retrieval
, pp. 501-508
-
-
Wang, J.1
De Vries, A.P.2
Reinders, M.3
|