메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

Predicting drug side effects by multi-label learning and ensemble learning

Author keywords

Ensemble learning; Multi label learning; Side effects

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; FORECASTING; LEARNING ALGORITHMS; NEAREST NEIGHBOR SEARCH;

EID: 84946416532     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0774-y     Document Type: Article
Times cited : (152)

References (33)
  • 1
    • 0042468096 scopus 로고    scopus 로고
    • Impact of drug transporter studies on drug discovery and development
    • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev. 2003;55(3):425-61.
    • (2003) Pharmacol Rev , vol.55 , Issue.3 , pp. 425-461
    • Mizuno, N.1    Niwa, T.2    Yotsumoto, Y.3    Sugiyama, Y.4
  • 2
    • 32344440237 scopus 로고    scopus 로고
    • Analysis of drug-induced effect patterns to link structure and side effects of medicines
    • Fliri AF, Loging WT, Thadeio PF, Volkmann RA. Analysis of drug-induced effect patterns to link structure and side effects of medicines. Nat Chem Biol. 2005;1(7):389-97.
    • (2005) Nat Chem Biol , vol.1 , Issue.7 , pp. 389-397
    • Fliri, A.F.1    Loging, W.T.2    Thadeio, P.F.3    Volkmann, R.A.4
  • 3
    • 22344435687 scopus 로고    scopus 로고
    • Predicting and preventing adverse drug reactions in the very old
    • Merle L, Laroche ML, Dantoine T, Charmes JP. Predicting and preventing adverse drug reactions in the very old. Drugs Aging. 2005;22(5):375-92.
    • (2005) Drugs Aging , vol.22 , Issue.5 , pp. 375-392
    • Merle, L.1    Laroche, M.L.2    Dantoine, T.3    Charmes, J.P.4
  • 4
    • 40049100210 scopus 로고    scopus 로고
    • Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure
    • Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, et al. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem. 2007;2(6):861-73.
    • (2007) ChemMedChem , vol.2 , Issue.6 , pp. 861-873
    • Bender, A.1    Scheiber, J.2    Glick, M.3    Davies, J.W.4    Azzaoui, K.5    Hamon, J.6
  • 5
    • 74549202691 scopus 로고    scopus 로고
    • Side effect prediction using cooperative pathways
    • 2009 BIBM'09 IEEE International Conference on. IEEE: Washington, DC
    • Fukuzaki M, Seki M, Kashima H, Sese J. Side effect prediction using cooperative pathways. Bioinformatics and Biomedicine. 2009 BIBM'09 IEEE International Conference on: 2009. IEEE: Washington, DC. 142-147.
    • (2009) Bioinformatics and Biomedicine , pp. 142-147
    • Fukuzaki, M.1    Seki, M.2    Kashima, H.3    Sese, J.4
  • 6
    • 84255163374 scopus 로고    scopus 로고
    • Predicting adverse side effects of drugs
    • Huang LC, Wu X, Chen JY. Predicting adverse side effects of drugs. BMC Genomics. 2011;12 Suppl 5:S11.
    • (2011) BMC Genomics , vol.12 , pp. S11
    • Huang, L.C.1    Wu, X.2    Chen, J.Y.3
  • 7
    • 79955969387 scopus 로고    scopus 로고
    • Predicting drug side-effect profiles: a chemical fragment-based approach
    • Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics. 2011;12:169.
    • (2011) BMC Bioinformatics , vol.12 , pp. 169
    • Pauwels, E.1    Stoven, V.2    Yamanishi, Y.3
  • 8
    • 84866460840 scopus 로고    scopus 로고
    • Relating drug-protein interaction network with drug side effects
    • Mizutani S, Pauwels E, Stoven V, Goto S, Yamanishi Y. Relating drug-protein interaction network with drug side effects. Bioinformatics. 2012;28(18):i522-8.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. i522-i528
    • Mizutani, S.1    Pauwels, E.2    Stoven, V.3    Goto, S.4    Yamanishi, Y.5
  • 9
    • 84871595040 scopus 로고    scopus 로고
    • Drug side-effect prediction based on the integration of chemical and biological spaces
    • Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on the integration of chemical and biological spaces. J Chem Inf Model. 2012;52(12):3284-92.
    • (2012) J Chem Inf Model , vol.52 , Issue.12 , pp. 3284-3292
    • Yamanishi, Y.1    Pauwels, E.2    Kotera, M.3
  • 10
    • 84863548955 scopus 로고    scopus 로고
    • Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs
    • Liu M, Wu YH, Chen YK, Sun JC, Zhao ZM, Chen XW, et al. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J Am Med Inf Assoc. 2012;19(E1):E28-35.
    • (2012) J Am Med Inf Assoc , vol.19 , Issue.E1 , pp. E28-E35
    • Liu, M.1    Wu, Y.H.2    Chen, Y.K.3    Sun, J.C.4    Zhao, Z.M.5    Chen, X.W.6
  • 12
    • 84876575669 scopus 로고    scopus 로고
    • Adverse drug events: database construction and in silico prediction
    • Cheng F, Li W, Wang X, Zhou Y, Wu Z, Shen J, et al. Adverse drug events: database construction and in silico prediction. J Chem Inf Model. 2013;53(4):744-52.
    • (2013) J Chem Inf Model , vol.53 , Issue.4 , pp. 744-752
    • Cheng, F.1    Li, W.2    Wang, X.3    Zhou, Y.4    Wu, Z.5    Shen, J.6
  • 13
    • 84872733056 scopus 로고    scopus 로고
    • Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures
    • Huang LC, Wu X, Chen JY. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures. Proteomics. 2013;13(2):313-24.
    • (2013) Proteomics , vol.13 , Issue.2 , pp. 313-324
    • Huang, L.C.1    Wu, X.2    Chen, J.Y.3
  • 14
    • 84894087399 scopus 로고    scopus 로고
    • Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning
    • Liu M, Cai R, Hu Y, Matheny ME, Sun J, Hu J, et al. Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning. J Am Med Inform Assoc. 2014;21(2):245-51.
    • (2014) J Am Med Inform Assoc , vol.21 , Issue.2 , pp. 245-251
    • Liu, M.1    Cai, R.2    Hu, Y.3    Matheny, M.E.4    Sun, J.5    Hu, J.6
  • 16
    • 67849104638 scopus 로고    scopus 로고
    • PubChem: a public information system for analyzing bioactivities of small molecules
    • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37(Web Server issue):W623-633.
    • (2009) Nucleic Acids Res , vol.37 , Issue.WEB SERVER ISSUE , pp. W623-633
    • Wang, Y.1    Xiao, J.2    Suzek, T.O.3    Zhang, J.4    Wang, J.5    Bryant, S.H.6
  • 17
    • 78649633211 scopus 로고    scopus 로고
    • PubChem as a public resource for drug discovery
    • Li Q, Cheng T, Wang Y, Bryant SH. PubChem as a public resource for drug discovery. Drug Discov Today. 2010;15(23-24):1052-7.
    • (2010) Drug Discov Today , vol.15 , Issue.23-24 , pp. 1052-1057
    • Li, Q.1    Cheng, T.2    Wang, Y.3    Bryant, S.H.4
  • 18
    • 33644876210 scopus 로고    scopus 로고
    • DrugBank: a comprehensive resource for in silico drug discovery and exploration
    • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668-672.
    • (2006) Nucleic Acids Res , vol.34 , Issue.DATABASE ISSUE , pp. D668-672
    • Wishart, D.S.1    Knox, C.2    Guo, A.C.3    Shrivastava, S.4    Hassanali, M.5    Stothard, P.6
  • 19
    • 38549151817 scopus 로고    scopus 로고
    • DrugBank: a knowledgebase for drugs, drug actions and drug targets
    • Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36(Database issue):D901-906.
    • (2008) Nucleic Acids Res , vol.36 , Issue.DATABASE ISSUE , pp. D901-906
    • Wishart, D.S.1    Knox, C.2    Guo, A.C.3    Cheng, D.4    Shrivastava, S.5    Tzur, D.6
  • 20
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3.0: a comprehensive resource for 'omics' research on drugs
    • Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011;39(Database issue):D1035-1041.
    • (2011) Nucleic Acids Res , vol.39 , Issue.DATABASE ISSUE , pp. D1035-1041
    • Knox, C.1    Law, V.2    Jewison, T.3    Liu, P.4    Ly, S.5    Frolkis, A.6
  • 21
    • 84891767304 scopus 로고    scopus 로고
    • DrugBank 4.0: shedding new light on drug metabolism
    • Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(Database issue):D1091-1097.
    • (2014) Nucleic Acids Res , vol.42 , Issue.DATABASE ISSUE , pp. D1091-1097
    • Law, V.1    Knox, C.2    Djoumbou, Y.3    Jewison, T.4    Guo, A.C.5    Liu, Y.6
  • 22
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic acids research. 2010;38(Database issue):D355-360.
    • (2010) Nucleic acids research , vol.38 , Issue.DATABASE ISSUE , pp. D355-360
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5
  • 23
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang M-L, Zhou Z-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition. 2007;40(7):2038-48.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 24
    • 84933515061 scopus 로고    scopus 로고
    • Multi-label Classification: an Overview
    • Greece: Dept of Informatics, Aristotle University of Thessaloniki
    • Tsoumakas G, Katakis I. Multi-label Classification: an Overview. Greece: Dept of Informatics, Aristotle University of Thessaloniki; 2006.
    • (2006)
    • Tsoumakas, G.1    Katakis, I.2
  • 25
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S. An extensive experimental comparison of methods for multi-label learning. Pattern Recognition. 2012;45(9):3084-104.
    • (2012) Pattern Recognition , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 27
    • 77956528679 scopus 로고    scopus 로고
    • Multi-Label Prediction via Compressed Sensing
    • NIPS: Vancouver, BC, Canada
    • Hsu D, Kakade S, Langford J, Zhang T. Multi-Label Prediction via Compressed Sensing. In: NIPS: Vancouver, BC, Canada. 2009. 772-780.
    • (2009) , pp. 772-780
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 28
    • 79551647496 scopus 로고    scopus 로고
    • Ensemble learning algorithms for classification of mtDNA into haplogroups
    • Wong C, Li Y, Lee C, Huang CH. Ensemble learning algorithms for classification of mtDNA into haplogroups. Brief Bioinform. 2011;12(1):1-9.
    • (2011) Brief Bioinform , vol.12 , Issue.1 , pp. 1-9
    • Wong, C.1    Li, Y.2    Lee, C.3    Huang, C.H.4
  • 29
    • 84886497931 scopus 로고    scopus 로고
    • An ensemble rank learning approach for gene prioritization. Osaka, Japan
    • Lee PF, Soo VW. An ensemble rank learning approach for gene prioritization. Osaka, Japan. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:3507-10.
    • (2013) Conf Proc IEEE Eng Med Biol Soc , vol.2013 , pp. 3507-3510
    • Lee, P.F.1    Soo, V.W.2
  • 30
    • 84896880054 scopus 로고    scopus 로고
    • Sample Subset Optimization Techniques for Imbalanced and Ensemble Learning Problems in Bioinformatics Applications
    • Yang P, Yoo PD, Fernando J, Zhou BB, Zhang Z, Zomaya AY. Sample Subset Optimization Techniques for Imbalanced and Ensemble Learning Problems in Bioinformatics Applications. IEEE transactions on cybernetics. 2014;44(3):445-455.
    • (2014) IEEE transactions on cybernetics , vol.44 , Issue.3 , pp. 445-455
    • Yang, P.1    Yoo, P.D.2    Fernando, J.3    Zhou, B.B.4    Zhang, Z.5    Zomaya, A.Y.6
  • 31
    • 84865183573 scopus 로고    scopus 로고
    • Computational prediction of conformational B-cell epitopes from antigen primary structures by ensemble learning
    • Zhang W, Niu Y, Xiong Y, Zhao M, Yu R, Liu J. Computational prediction of conformational B-cell epitopes from antigen primary structures by ensemble learning. PloS One. 2012;7(8):e43575.
    • (2012) PloS One , vol.7 , Issue.8 , pp. e43575
    • Zhang, W.1    Niu, Y.2    Xiong, Y.3    Zhao, M.4    Yu, R.5    Liu, J.6
  • 33
    • 84934996079 scopus 로고    scopus 로고
    • Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning
    • Zhang W, Niu Y, Zou H, Luo L, Liu Q, Wu W. Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning. PLoS One. 2015;10(5):e0128194.
    • (2015) PLoS One , vol.10 , Issue.5 , pp. e0128194
    • Zhang, W.1    Niu, Y.2    Zou, H.3    Luo, L.4    Liu, Q.5    Wu, W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.