메뉴 건너뛰기




Volumn 25, Issue 3, 2017, Pages 217-228

Disentangling Interactions in the Microbiome: A Network Perspective

Author keywords

keystone species; microbial clusters; microbial interactions; microbiome; network

Indexed keywords

ALGORITHM; BACTERIAL COLONIZATION; CLUSTER ANALYSIS; COEVOLUTION; CORRELATION ANALYSIS; DYSBIOSIS; HOST PATHOGEN INTERACTION; HUMAN; INTESTINE FLORA; KEYSTONE SPECIES; METAGENOME; MICROBIAL COMMUNITY; MICROBIOME; MIXED INFECTION; NETWORK LEARNING; NONHUMAN; PROBABILITY THEORY; PROTEIN PROTEIN INTERACTION; REGRESSION ANALYSIS; REVIEW; UPPER RESPIRATORY TRACT INFECTION; ANIMAL; BIOLOGICAL MODEL; MICROBIOLOGICAL PHENOMENA AND FUNCTIONS; MICROFLORA; PHYSIOLOGY;

EID: 85007441159     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2016.11.008     Document Type: Review
Times cited : (606)

References (78)
  • 1
    • 84861980130 scopus 로고    scopus 로고
    • Interactions between the microbiota and the immune system
    • 1 Hooper, L.V., et al. Interactions between the microbiota and the immune system. Science 336 (2012), 1268–1273.
    • (2012) Science , vol.336 , pp. 1268-1273
    • Hooper, L.V.1
  • 2
    • 84978115999 scopus 로고    scopus 로고
    • The microbiome and innate immunity
    • 2 Thaiss, C.A., et al. The microbiome and innate immunity. Nature 535 (2016), 65–74.
    • (2016) Nature , vol.535 , pp. 65-74
    • Thaiss, C.A.1
  • 3
    • 84929298149 scopus 로고    scopus 로고
    • Microbiota and host nutrition across plant and animal kingdoms
    • 3 Hacquard, S., et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17 (2015), 603–616.
    • (2015) Cell Host Microbe , vol.17 , pp. 603-616
    • Hacquard, S.1
  • 4
    • 84912109726 scopus 로고    scopus 로고
    • Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition
    • 4 Pop, M., et al. Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome Biol., 15, 2014, R76.
    • (2014) Genome Biol. , vol.15 , pp. R76
    • Pop, M.1
  • 5
    • 84945303447 scopus 로고    scopus 로고
    • The gut microbiota and Type 1 Diabetes
    • 5 Gülden, E., et al. The gut microbiota and Type 1 Diabetes. Clin. Immunol. 159 (2015), 143–153.
    • (2015) Clin. Immunol. , vol.159 , pp. 143-153
    • Gülden, E.1
  • 6
    • 84964809175 scopus 로고    scopus 로고
    • Gut microbiota and colorectal cancer
    • 6 Yu, Y-N., Fang, J-Y., Gut microbiota and colorectal cancer. Gastrointest. Tumors 2 (2015), 26–32.
    • (2015) Gastrointest. Tumors , vol.2 , pp. 26-32
    • Yu, Y.-N.1    Fang, J.-Y.2
  • 7
    • 84866549438 scopus 로고    scopus 로고
    • Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment
    • 7 Morgan, X.C., et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol., 13, 2012, R79.
    • (2012) Genome Biol. , vol.13 , pp. R79
    • Morgan, X.C.1
  • 8
    • 84890985732 scopus 로고    scopus 로고
    • Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome
    • 8 Jalanka-Tuovinen, J., et al. Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63 (2014), 1737–1745.
    • (2014) Gut , vol.63 , pp. 1737-1745
    • Jalanka-Tuovinen, J.1
  • 9
    • 84973667684 scopus 로고    scopus 로고
    • Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome
    • 9 Perry, R.J., et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534 (2016), 213–217.
    • (2016) Nature , vol.534 , pp. 213-217
    • Perry, R.J.1
  • 10
    • 84856374839 scopus 로고    scopus 로고
    • Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae
    • 10 Stecher, B., et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 1269–1274.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1269-1274
    • Stecher, B.1
  • 11
    • 84951912603 scopus 로고    scopus 로고
    • The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals
    • 11 Rodrigues Hoffmann, A., et al. The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals. Vet. Pathol. 53 (2016), 10–21.
    • (2016) Vet. Pathol. , vol.53 , pp. 10-21
    • Rodrigues Hoffmann, A.1
  • 12
    • 84925855673 scopus 로고    scopus 로고
    • The gut microbiome in cardio-metabolic health
    • 12 Hansen, T.H., et al. The gut microbiome in cardio-metabolic health. Genome Med., 7, 2015, 33.
    • (2015) Genome Med. , vol.7 , pp. 33
    • Hansen, T.H.1
  • 13
    • 84878450664 scopus 로고    scopus 로고
    • Interpreting infective microbiota: the importance of an ecological perspective
    • 13 Rogers, G.B., et al. Interpreting infective microbiota: the importance of an ecological perspective. Trends Microbiol. 21 (2013), 271–276.
    • (2013) Trends Microbiol. , vol.21 , pp. 271-276
    • Rogers, G.B.1
  • 14
    • 84896863130 scopus 로고    scopus 로고
    • Bacterial multispecies studies and microbiome analysis of a plant disease
    • 14 Passos da Silva, D., et al. Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiol. Read. Engl. 160 (2014), 556–566.
    • (2014) Microbiol. Read. Engl. , vol.160 , pp. 556-566
    • Passos da Silva, D.1
  • 15
    • 80455145221 scopus 로고    scopus 로고
    • An in vivo polymicrobial biofilm wound infection model to study interspecies interactions
    • 15 Dalton, T., et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PloS One, 6, 2011, e27317.
    • (2011) PloS One , vol.6 , pp. e27317
    • Dalton, T.1
  • 16
    • 84895190999 scopus 로고    scopus 로고
    • Mechanisms of synergy in polymicrobial infections
    • 16 Murray, J.L., et al. Mechanisms of synergy in polymicrobial infections. J. Microbiol. Seoul Korea 52 (2014), 188–199.
    • (2014) J. Microbiol. Seoul Korea , vol.52 , pp. 188-199
    • Murray, J.L.1
  • 17
    • 20144380698 scopus 로고    scopus 로고
    • Network thinking in ecology and evolution
    • 17 Proulx, S.R., et al. Network thinking in ecology and evolution. Trends Ecol. Evol. 20 (2005), 345–353.
    • (2005) Trends Ecol. Evol. , vol.20 , pp. 345-353
    • Proulx, S.R.1
  • 18
    • 84863920287 scopus 로고    scopus 로고
    • Microbial interactions: from networks to models
    • 18 Faust, K., Raes, J., Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10 (2012), 538–550.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 538-550
    • Faust, K.1    Raes, J.2
  • 19
    • 84864579031 scopus 로고    scopus 로고
    • Microbial co-occurrence relationships in the human microbiome
    • 19 Faust, K., et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol., 8, 2012, e1002606.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002606
    • Faust, K.1
  • 20
    • 84929997716 scopus 로고    scopus 로고
    • Determinants of community structure in the global plankton interactome
    • 20 Lima-Mendez, G., et al. Determinants of community structure in the global plankton interactome. Science, 348, 2015, 1262073.
    • (2015) Science , vol.348 , pp. 1262073
    • Lima-Mendez, G.1
  • 21
    • 85027927719 scopus 로고    scopus 로고
    • Enterotypes of the human gut microbiome
    • 21 Arumugam, M., et al. Enterotypes of the human gut microbiome. Nature 473 (2011), 174–180.
    • (2011) Nature , vol.473 , pp. 174-180
    • Arumugam, M.1
  • 22
    • 84855949949 scopus 로고    scopus 로고
    • Using network analysis to explore co-occurrence patterns in soil microbial communities
    • 22 Barberán, A., et al. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6 (2012), 343–351.
    • (2012) ISME J. , vol.6 , pp. 343-351
    • Barberán, A.1
  • 23
    • 84923197818 scopus 로고    scopus 로고
    • Seasonal community succession of the phyllosphere microbiome
    • 23 Copeland, J.K., et al. Seasonal community succession of the phyllosphere microbiome. Mol. Plant. Microbe Interact. 28 (2015), 274–285.
    • (2015) Mol. Plant. Microbe Interact. , vol.28 , pp. 274-285
    • Copeland, J.K.1
  • 24
    • 84991010752 scopus 로고    scopus 로고
    • A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
    • 24 Chen, E.Z., Li, H., A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics 32 (2016), 2611–2617.
    • (2016) Bioinformatics , vol.32 , pp. 2611-2617
    • Chen, E.Z.1    Li, H.2
  • 25
    • 84959106176 scopus 로고    scopus 로고
    • Correlation detection strategies in microbial data sets vary widely in sensitivity and precision
    • 25 Weiss, S., et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10 (2016), 1669–1681.
    • (2016) ISME J. , vol.10 , pp. 1669-1681
    • Weiss, S.1
  • 26
    • 84867627559 scopus 로고    scopus 로고
    • Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria
    • 26 van den Bergh, M.R., et al. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria. PloS One, 7, 2012, e47711.
    • (2012) PloS One , vol.7 , pp. e47711
    • van den Bergh, M.R.1
  • 27
    • 84884397652 scopus 로고    scopus 로고
    • Integrative approaches for finding modular structure in biological networks
    • 27 Mitra, K., et al. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14 (2013), 719–732.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 719-732
    • Mitra, K.1
  • 28
    • 33750177351 scopus 로고
    • Centrality in social networks conceptual clarification
    • 28 Freeman, L.C., Centrality in social networks conceptual clarification. Soc. Netw. 1 (1978), 215–239.
    • (1978) Soc. Netw. , vol.1 , pp. 215-239
    • Freeman, L.C.1
  • 29
    • 0035648637 scopus 로고    scopus 로고
    • A faster algorithm for betweenness centrality
    • 29 Brandes, U., A faster algorithm for betweenness centrality. J. Math. Sociol. 25 (2001), 163–177.
    • (2001) J. Math. Sociol. , vol.25 , pp. 163-177
    • Brandes, U.1
  • 30
    • 84936824655 scopus 로고
    • Power and centrality: a family of measures
    • 30 Bonacich, P., Power and centrality: a family of measures. Am. J. Sociol. 92 (1987), 1170–1182.
    • (1987) Am. J. Sociol. , vol.92 , pp. 1170-1182
    • Bonacich, P.1
  • 31
    • 84867497055 scopus 로고    scopus 로고
    • Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: a walk counting approach
    • 31 Bauer, F., Lizier, J.T., Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: a walk counting approach. EPL Europhys. Lett., 99, 2012, 68007.
    • (2012) EPL Europhys. Lett. , vol.99 , pp. 68007
    • Bauer, F.1    Lizier, J.T.2
  • 32
    • 84892962563 scopus 로고    scopus 로고
    • Epidemic centrality - is there an underestimated epidemic impact of network peripheral nodes?
    • 32 Sikic, M., et al. Epidemic centrality - is there an underestimated epidemic impact of network peripheral nodes?. Eur. Phys. J. B, 86, 2013, 440.
    • (2013) Eur. Phys. J. B , vol.86 , pp. 440
    • Sikic, M.1
  • 33
    • 84905030166 scopus 로고    scopus 로고
    • Deciphering microbial interactions and detecting keystone species with co-occurrence networks
    • 33 Berry, D., Widder, S., Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Microb. Symbioses, 5, 2014, 219.
    • (2014) Microb. Symbioses , vol.5 , pp. 219
    • Berry, D.1    Widder, S.2
  • 34
    • 84870810330 scopus 로고    scopus 로고
    • Accessibility in networks: A useful measure for understanding social insect nest architecture
    • 34 Viana, M.P., et al. Accessibility in networks: A useful measure for understanding social insect nest architecture. Chaos Solitons Fractals 46 (2013), 38–45.
    • (2013) Chaos Solitons Fractals , vol.46 , pp. 38-45
    • Viana, M.P.1
  • 35
    • 84924043785 scopus 로고    scopus 로고
    • Understanding the spreading power of all nodes in a network
    • 35 Lawyer, G., Understanding the spreading power of all nodes in a network. Sci. Rep., 5, 2014, 8665.
    • (2014) Sci. Rep. , vol.5 , pp. 8665
    • Lawyer, G.1
  • 37
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • 37 Kleinberg, J.M., Authoritative sources in a hyperlinked environment. JACM 46 (1999), 604–632.
    • (1999) JACM , vol.46 , pp. 604-632
    • Kleinberg, J.M.1
  • 38
    • 84879744885 scopus 로고    scopus 로고
    • The long-term stability of the human gut microbiota
    • 38 Faith, J.J., et al. The long-term stability of the human gut microbiota. Science, 341, 2013, 1237439.
    • (2013) Science , vol.341 , pp. 1237439
    • Faith, J.J.1
  • 39
    • 84865477413 scopus 로고    scopus 로고
    • Antibiotics in early life alter the murine colonic microbiome and adiposity
    • 39 Cho, I., et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488 (2012), 621–626.
    • (2012) Nature , vol.488 , pp. 621-626
    • Cho, I.1
  • 40
    • 84892828465 scopus 로고    scopus 로고
    • Diet rapidly and reproducibly alters the human gut microbiome
    • 40 David, L.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (2014), 559–563.
    • (2014) Nature , vol.505 , pp. 559-563
    • David, L.A.1
  • 41
    • 84872568885 scopus 로고    scopus 로고
    • Efficient statistical significance approximation for local similarity analysis of high-throughput time series data
    • 41 Xia, L.C., et al. Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinforma. Oxf. Engl. 29 (2013), 230–237.
    • (2013) Bioinforma. Oxf. Engl. , vol.29 , pp. 230-237
    • Xia, L.C.1
  • 42
    • 84870506713 scopus 로고    scopus 로고
    • Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates
    • 42 Xia, L.C., et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5 (2011), 1–12.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 1-12
    • Xia, L.C.1
  • 43
    • 33749824905 scopus 로고    scopus 로고
    • Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors
    • 43 Ruan, Q., et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinforma. Oxf. Engl. 22 (2006), 2532–2538.
    • (2006) Bioinforma. Oxf. Engl. , vol.22 , pp. 2532-2538
    • Ruan, Q.1
  • 44
    • 84855951093 scopus 로고    scopus 로고
    • Coherent dynamics and association networks among lake bacterioplankton taxa
    • 44 Eiler, A., et al. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6 (2012), 330–342.
    • (2012) ISME J. , vol.6 , pp. 330-342
    • Eiler, A.1
  • 45
    • 84957566691 scopus 로고    scopus 로고
    • Longitudinal prediction of the infant gut microbiome with dynamic Bayesian networks
    • 45 McGeachie, M.J., et al. Longitudinal prediction of the infant gut microbiome with dynamic Bayesian networks. Sci. Rep., 6, 2016, 20359.
    • (2016) Sci. Rep. , vol.6 , pp. 20359
    • McGeachie, M.J.1
  • 46
    • 84931265628 scopus 로고    scopus 로고
    • Metagenomics meets time series analysis: unraveling microbial community dynamics
    • 46 Faust, K., et al. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25 (2015), 56–66.
    • (2015) Curr. Opin. Microbiol. , vol.25 , pp. 56-66
    • Faust, K.1
  • 47
    • 84890089590 scopus 로고    scopus 로고
    • Bayesian Gaussian copula factor models for mixed data
    • 47 Murray, J.S., et al. Bayesian Gaussian copula factor models for mixed data. J. Am. Stat. Assoc. 108 (2013), 656–665.
    • (2013) J. Am. Stat. Assoc. , vol.108 , pp. 656-665
    • Murray, J.S.1
  • 49
    • 84889679014 scopus 로고    scopus 로고
    • Discovering disease-disease associations by fusing systems-level molecular data
    • 49 Žitnik, M., et al. Discovering disease-disease associations by fusing systems-level molecular data. Sci. Rep., 3, 2013, 3202.
    • (2013) Sci. Rep. , vol.3 , pp. 3202
    • Žitnik, M.1
  • 50
    • 84946046702 scopus 로고    scopus 로고
    • Matrix factorization-based data fusion for drug-induced liver injury prediction
    • 50 Žitnik, M., Zupan, B., Matrix factorization-based data fusion for drug-induced liver injury prediction. Syst. Biomed. 2 (2014), 16–22.
    • (2014) Syst. Biomed. , vol.2 , pp. 16-22
    • Žitnik, M.1    Zupan, B.2
  • 51
    • 84931037666 scopus 로고    scopus 로고
    • Gene network inference by fusing data from diverse distributions
    • 51 Žitnik, M., Zupan, B., Gene network inference by fusing data from diverse distributions. Bioinformatics 31 (2015), i230–i239.
    • (2015) Bioinformatics , vol.31 , pp. i230-i239
    • Žitnik, M.1    Zupan, B.2
  • 53
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • 53 Barabási, A-L., Albert, R., Emergence of scaling in random networks. Science 286 (1999), 509–512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabási, A.-L.1    Albert, R.2
  • 54
    • 84938584646 scopus 로고    scopus 로고
    • Apoptosis regulatory protein–protein interaction demonstrates hierarchical scale-free fractal network
    • 54 Nafis, S., et al. Apoptosis regulatory protein–protein interaction demonstrates hierarchical scale-free fractal network. Brief. Bioinform. 16 (2014), 675–699.
    • (2014) Brief. Bioinform. , vol.16 , pp. 675-699
    • Nafis, S.1
  • 55
    • 84929069926 scopus 로고    scopus 로고
    • Increased signaling entropy in cancer requires the scale-free property of protein interaction networks
    • 55 Teschendorff, A.E., et al. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci. Rep., 5, 2015, 9646.
    • (2015) Sci. Rep. , vol.5 , pp. 9646
    • Teschendorff, A.E.1
  • 56
    • 84924181828 scopus 로고    scopus 로고
    • Towards a theory of Scale-free graphs: definition, properties, and implications
    • 56 Li, L., et al. Towards a theory of Scale-free graphs: definition, properties, and implications. Internet Math. 2 (2005), 431–523.
    • (2005) Internet Math. , vol.2 , pp. 431-523
    • Li, L.1
  • 57
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of “small-world” networks
    • 57 Watts, D.J., Strogatz, S.H., Collective dynamics of “small-world” networks. Nature 393 (1998), 440–442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 58
    • 44349168786 scopus 로고    scopus 로고
    • Network “small-world-ness”: a quantitative method for determining canonical network equivalence
    • 58 Humphries, M.D., Gurney, K., Network “small-world-ness”: a quantitative method for determining canonical network equivalence. PLoS One, 3, 2008, e2051.
    • (2008) PLoS One , vol.3 , pp. e2051
    • Humphries, M.D.1    Gurney, K.2
  • 59
    • 35948931439 scopus 로고    scopus 로고
    • An Arabidopsis gene network based on the graphical Gaussian model
    • 59 Ma, S., et al. An Arabidopsis gene network based on the graphical Gaussian model. Genome Res. 17 (2007), 1614–1625.
    • (2007) Genome Res. , vol.17 , pp. 1614-1625
    • Ma, S.1
  • 60
    • 30044444291 scopus 로고    scopus 로고
    • Low-order conditional independence graphs for inferring genetic networks
    • 60 Wille, A., Bühlmann, P., Low-order conditional independence graphs for inferring genetic networks. Stat. Appl. Genet. Mol. Biol., 5, 2006, 1.
    • (2006) Stat. Appl. Genet. Mol. Biol. , vol.5 , pp. 1
    • Wille, A.1    Bühlmann, P.2
  • 61
    • 84930608352 scopus 로고    scopus 로고
    • Sparse and compositionally robust inference of microbial ecological networks
    • 61 Kurtz, Z.D., et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol., 11, 2015, e1004226.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004226
    • Kurtz, Z.D.1
  • 62
    • 84865733148 scopus 로고    scopus 로고
    • Inferring correlation networks from genomic survey data
    • 62 Friedman, J., Alm, E.J., Inferring correlation networks from genomic survey data. PLoS Comput. Biol., 8, 2012, e1002687.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002687
    • Friedman, J.1    Alm, E.J.2
  • 63
    • 84957999071 scopus 로고    scopus 로고
    • A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities
    • 63 Bell, T.A.S., et al. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities. Microbiotechnology Ecotoxicol. Bioremediation, 6, 2016, 1480.
    • (2016) Microbiotechnology Ecotoxicol. Bioremediation , vol.6 , pp. 1480
    • Bell, T.A.S.1
  • 64
    • 84897446616 scopus 로고    scopus 로고
    • A fair comparison
    • 359-3489
    • 64 Costea, P.I., et al. A fair comparison. Nat. Methods, 11, 2014 359-3489.
    • (2014) Nat. Methods , vol.11
    • Costea, P.I.1
  • 65
    • 85010951420 scopus 로고    scopus 로고
    • CoNet app: inference of biological association networks using Cytoscape
    • 65 Faust, K., Raes, J., CoNet app: inference of biological association networks using Cytoscape. F1000Research, 5, 2016, 1519.
    • (2016) F1000Research , vol.5 , pp. 1519
    • Faust, K.1    Raes, J.2
  • 66
    • 84946829739 scopus 로고    scopus 로고
    • Cross-biome comparison of microbial association networks
    • 66 Faust, K., et al. Cross-biome comparison of microbial association networks. Syst. Microbiol., 6, 2015, 1200.
    • (2015) Syst. Microbiol. , vol.6 , pp. 1200
    • Faust, K.1
  • 67
    • 84946878516 scopus 로고    scopus 로고
    • Investigating microbial co-occurrence patterns based on metagenomic compositional data
    • 67 Ban, Y., et al. Investigating microbial co-occurrence patterns based on metagenomic compositional data. Bioinformatics 31 (2015), 3322–3329.
    • (2015) Bioinformatics , vol.31 , pp. 3322-3329
    • Ban, Y.1
  • 68
    • 84943379443 scopus 로고    scopus 로고
    • CCLasso: correlation inference for compositional data through Lasso
    • 68 Fang, H., et al. CCLasso: correlation inference for compositional data through Lasso. Bioinformatics 31 (2015), 3172–3180.
    • (2015) Bioinformatics , vol.31 , pp. 3172-3180
    • Fang, H.1
  • 69
    • 84861557467 scopus 로고    scopus 로고
    • Molecular ecological network analyses
    • 69 Deng, Y., et al. Molecular ecological network analyses. BMC Bioinformatics, 13, 2012, 113.
    • (2012) BMC Bioinformatics , vol.13 , pp. 113
    • Deng, Y.1
  • 70
    • 84926327586 scopus 로고    scopus 로고
    • Learning microbial interaction networks from metagenomic count data
    • T.M. Przytycka Springer
    • 70 Biswas, S., et al. Learning microbial interaction networks from metagenomic count data. Przytycka, T.M., (eds.) Research in Computational Molecular Biology, 2015, Springer, 32–43.
    • (2015) Research in Computational Molecular Biology , pp. 32-43
    • Biswas, S.1
  • 71
    • 0037062448 scopus 로고    scopus 로고
    • Community structure in social and biological networks
    • 71 Girvan, M., Newman, M.E.J., Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 7821–7826.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 7821-7826
    • Girvan, M.1    Newman, M.E.J.2
  • 73
    • 56349094785 scopus 로고    scopus 로고
    • Fast unfolding of communities in large networks
    • 73 Blondel, V.D., et al. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp., 2008, 2008, P10008.
    • (2008) J. Stat. Mech. Theory Exp. , vol.2008 , pp. P10008
    • Blondel, V.D.1
  • 74
    • 61849113253 scopus 로고    scopus 로고
    • Graph clustering via a discrete uncoupling process
    • 74 Van Dongen, S., Graph clustering via a discrete uncoupling process. SIAM J. Matrix Anal. Appl. 30 (2008), 121–141.
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , pp. 121-141
    • Van Dongen, S.1
  • 75
    • 84885828125 scopus 로고    scopus 로고
    • Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis
    • 75 Hua, Z., et al. Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 16927–16932.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 16927-16932
    • Hua, Z.1
  • 76
    • 84902955557 scopus 로고    scopus 로고
    • Phylogenomics and the dynamic genome evolution of the genus Streptococcus
    • 76 Richards, V.P., et al. Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol. Evol. 6 (2014), 741–753.
    • (2014) Genome Biol. Evol. , vol.6 , pp. 741-753
    • Richards, V.P.1
  • 77
    • 84949671129 scopus 로고    scopus 로고
    • Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks
    • 77 Lei, X., et al. Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks. Inf. Sci. 329 (2016), 303–316.
    • (2016) Inf. Sci. , vol.329 , pp. 303-316
    • Lei, X.1
  • 78
    • 84872735831 scopus 로고    scopus 로고
    • Construction and application of dynamic protein interaction network based on time course gene expression data
    • 78 Wang, J., et al. Construction and application of dynamic protein interaction network based on time course gene expression data. PROTEOMICS 13 (2013), 301–312.
    • (2013) PROTEOMICS , vol.13 , pp. 301-312
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.