-
1
-
-
0018764335
-
Diabetes and cardiovascular disease. The Framingham study
-
[1] Kannel, W.B., McGee, D.L., Diabetes and cardiovascular disease. The Framingham study. Jama 241 (1979), 2035–2038.
-
(1979)
Jama
, vol.241
, pp. 2035-2038
-
-
Kannel, W.B.1
McGee, D.L.2
-
2
-
-
79959709996
-
Overexpression of human C-reactive protein exacerbates left ventricular remodeling in diabetic cardiomyopathy
-
[2] Mano, Y., Anzai, T., Kaneko, H., et al. Overexpression of human C-reactive protein exacerbates left ventricular remodeling in diabetic cardiomyopathy. Circ. J. 75 (2011), 1717–1727.
-
(2011)
Circ. J.
, vol.75
, pp. 1717-1727
-
-
Mano, Y.1
Anzai, T.2
Kaneko, H.3
-
3
-
-
79952860374
-
Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats
-
[3] Wang, J., Wang, H., Hao, P., et al. Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats. Mol. Med. 17 (2011), 172–179.
-
(2011)
Mol. Med.
, vol.17
, pp. 172-179
-
-
Wang, J.1
Wang, H.2
Hao, P.3
-
4
-
-
79957969004
-
Mitochondrial dysfunction in diabetic cardiomyopathy
-
[4] Duncan, J.G., Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim. Biophys. Acta 1813 (2011), 1351–1359.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1351-1359
-
-
Duncan, J.G.1
-
5
-
-
32644448320
-
The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy
-
[5] Asbun, J., Villarreal, F.J., The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 47 (2006), 693–700.
-
(2006)
J. Am. Coll. Cardiol.
, vol.47
, pp. 693-700
-
-
Asbun, J.1
Villarreal, F.J.2
-
6
-
-
84910110899
-
The role of erythropoietin stimulating agents in anemic patients with heart failure: solved and unresolved questions
-
[6] Palazzuoli, A., Ruocco, G., Pellegrini, M., et al. The role of erythropoietin stimulating agents in anemic patients with heart failure: solved and unresolved questions. Ther. Clin. Risk. Manag. 10 (2014), 641–650.
-
(2014)
Ther. Clin. Risk. Manag.
, vol.10
, pp. 641-650
-
-
Palazzuoli, A.1
Ruocco, G.2
Pellegrini, M.3
-
7
-
-
11344254385
-
Erythropoietin on a tightrope: balancing neuronal and vascular protection between intrinsic and extrinsic pathways
-
[7] Li, F., Chong, Z.Z., Maiese, K., Erythropoietin on a tightrope: balancing neuronal and vascular protection between intrinsic and extrinsic pathways. Neurosignals 13 (2004), 265–289.
-
(2004)
Neurosignals
, vol.13
, pp. 265-289
-
-
Li, F.1
Chong, Z.Z.2
Maiese, K.3
-
8
-
-
0842334686
-
Non-erythroid functions of erythropoietin
-
[8] Gassmann, M., Heinicke, K., Soliz, J., et al. Non-erythroid functions of erythropoietin. Adv. Exp. Med. Biol. 543 (2003), 323–330.
-
(2003)
Adv. Exp. Med. Biol.
, vol.543
, pp. 323-330
-
-
Gassmann, M.1
Heinicke, K.2
Soliz, J.3
-
9
-
-
70949095435
-
Recombinant human erythropoietin in the treatment of acute ischemic stroke
-
[9] Ehrenreich, H., Weissenborn, K., Prange, H., et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40 (2009), e647–656.
-
(2009)
Stroke
, vol.40
, pp. e647-656
-
-
Ehrenreich, H.1
Weissenborn, K.2
Prange, H.3
-
10
-
-
49449099816
-
Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin
-
[10] Brines, M., Patel, N.S., Villa, P., et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 10925–10930.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 10925-10930
-
-
Brines, M.1
Patel, N.S.2
Villa, P.3
-
11
-
-
84878026102
-
Chronic administration of small nonerythropoietic peptide sequence of erythropoietin effectively ameliorates the progression of postmyocardial infarction-dilated cardiomyopathy
-
[11] Ahmet, I., Tae, H.J., Brines, M., et al. Chronic administration of small nonerythropoietic peptide sequence of erythropoietin effectively ameliorates the progression of postmyocardial infarction-dilated cardiomyopathy. J. Pharmacol. Exp. Ther. 345 (2013), 446–456.
-
(2013)
J. Pharmacol. Exp. Ther.
, vol.345
, pp. 446-456
-
-
Ahmet, I.1
Tae, H.J.2
Brines, M.3
-
12
-
-
80755152818
-
Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy
-
[12] McVicar, C.M., Hamilton, R., Colhoun, L.M., et al. Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes 60 (2011), 2995–3005.
-
(2011)
Diabetes
, vol.60
, pp. 2995-3005
-
-
McVicar, C.M.1
Hamilton, R.2
Colhoun, L.M.3
-
13
-
-
77955342581
-
Inhibition of autophagy in the heart induces age-related cardiomyopathy
-
[13] Taneike, M., Yamaguchi, O., Nakai, A., et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6 (2010), 600–606.
-
(2010)
Autophagy
, vol.6
, pp. 600-606
-
-
Taneike, M.1
Yamaguchi, O.2
Nakai, A.3
-
14
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
[14] Kim, J., Kundu, M., Viollet, B., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13 (2011), 132–141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
-
15
-
-
84992448510
-
Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions
-
[15] Langer, S., Kreutz, R., Eisenreich, A., Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J. Nephrol. 29 (2016), 765–773.
-
(2016)
J. Nephrol.
, vol.29
, pp. 765-773
-
-
Langer, S.1
Kreutz, R.2
Eisenreich, A.3
-
16
-
-
79959385996
-
Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice
-
[16] Xie, Z., Lau, K., Eby, B., et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60 (2011), 1770–1778.
-
(2011)
Diabetes
, vol.60
, pp. 1770-1778
-
-
Xie, Z.1
Lau, K.2
Eby, B.3
-
17
-
-
84919825937
-
A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy
-
[17] Guo, Y., Yu, W., Sun, D., et al. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy. Biochim. Biophys. Acta 1852 (2015), 319–331.
-
(2015)
Biochim. Biophys. Acta
, vol.1852
, pp. 319-331
-
-
Guo, Y.1
Yu, W.2
Sun, D.3
-
18
-
-
84884562299
-
Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy
-
[18] Zhao, Y., Zhang, L., Qiao, Y., et al. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. Plos One, 8, 2013, e75927.
-
(2013)
Plos One
, vol.8
, pp. e75927
-
-
Zhao, Y.1
Zhang, L.2
Qiao, Y.3
-
19
-
-
48849086702
-
Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart
-
[19] Zhou, G., Li, X., Hein, D.W., et al. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J. Am. Coll. Cardiol. 52 (2008), 655–666.
-
(2008)
J. Am. Coll. Cardiol.
, vol.52
, pp. 655-666
-
-
Zhou, G.1
Li, X.2
Hein, D.W.3
-
20
-
-
33846909763
-
An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence
-
[20] Deka, S., Vanover, J., Sun, J., et al. An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol. 9 (2007), 725–737.
-
(2007)
Cell Microbiol.
, vol.9
, pp. 725-737
-
-
Deka, S.1
Vanover, J.2
Sun, J.3
-
21
-
-
84944071789
-
Nonerythropoietic erythropoietin-derived peptide suppresses adipogenesis, inflammation, obesity and insulin resistance
-
[21] Liu, Y., Luo, B., Shi, R., et al. Nonerythropoietic erythropoietin-derived peptide suppresses adipogenesis, inflammation, obesity and insulin resistance. Sci. Rep., 5, 2015, 15134.
-
(2015)
Sci. Rep.
, vol.5
, pp. 15134
-
-
Liu, Y.1
Luo, B.2
Shi, R.3
-
22
-
-
79954488111
-
Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde
-
[22] Ma, H., Guo, R., Yu, L., et al. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart. J. 32 (2011), 1025–1038.
-
(2011)
Eur. Heart. J.
, vol.32
, pp. 1025-1038
-
-
Ma, H.1
Guo, R.2
Yu, L.3
-
23
-
-
0005677775
-
3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes
-
[23] Seglen, P.O., Gordon, P.B., 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 79 (1982), 1889–1892.
-
(1982)
Proc. Natl. Acad. Sci. U. S. A.
, vol.79
, pp. 1889-1892
-
-
Seglen, P.O.1
Gordon, P.B.2
-
24
-
-
77955283283
-
Involvement of AMPK in alcohol dehydrogenase accentuated myocardial dysfunction following acute ethanol challenge in mice
-
[24] Guo, R., Scott, G.I., Ren, J., Involvement of AMPK in alcohol dehydrogenase accentuated myocardial dysfunction following acute ethanol challenge in mice. Plos One, 5, 2010, e11268.
-
(2010)
Plos One
, vol.5
, pp. e11268
-
-
Guo, R.1
Scott, G.I.2
Ren, J.3
-
25
-
-
84938270248
-
Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke
-
[25] Jiang, T., Yu, J.T., Zhu, X.C., et al. Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke. Mol. Neurobiol. 51 (2015), 220–229.
-
(2015)
Mol. Neurobiol.
, vol.51
, pp. 220-229
-
-
Jiang, T.1
Yu, J.T.2
Zhu, X.C.3
-
26
-
-
84929952785
-
Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway
-
[26] Zhang, M., Sun, D., Li, S., et al. Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway. J. Cell Mol. Med. 19 (2015), 1174–1182.
-
(2015)
J. Cell Mol. Med.
, vol.19
, pp. 1174-1182
-
-
Zhang, M.1
Sun, D.2
Li, S.3
-
27
-
-
84930089116
-
Flipping the molecular switch for innate protection and repair of tissues: long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin
-
[27] Collino, M., Thiemermann, C., Cerami, A., et al. Flipping the molecular switch for innate protection and repair of tissues: long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol. Ther. 151 (2015), 32–40.
-
(2015)
Pharmacol. Ther.
, vol.151
, pp. 32-40
-
-
Collino, M.1
Thiemermann, C.2
Cerami, A.3
-
28
-
-
6944237300
-
Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor
-
[28] Brines, M., Grasso, G., Fiordaliso, F., et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 14907–14912.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 14907-14912
-
-
Brines, M.1
Grasso, G.2
Fiordaliso, F.3
-
29
-
-
84940544330
-
Erythropoietin improves glucose metabolism and pancreatic beta-cell damage in experimental diabetic rats
-
[29] Chen, L.N., Sun, Q., Liu, S.Q., et al. Erythropoietin improves glucose metabolism and pancreatic beta-cell damage in experimental diabetic rats. Mol. Med. Rep. 12 (2015), 5391–5398.
-
(2015)
Mol. Med. Rep.
, vol.12
, pp. 5391-5398
-
-
Chen, L.N.1
Sun, Q.2
Liu, S.Q.3
-
30
-
-
12244284657
-
The effect of correction of anaemia in diabetics and non-diabetics with severe resistant congestive heart failure and chronic renal failure by subcutaneous erythropoietin and intravenous iron
-
[30] Silverberg, D.S., Wexler, D., Blum, M., et al. The effect of correction of anaemia in diabetics and non-diabetics with severe resistant congestive heart failure and chronic renal failure by subcutaneous erythropoietin and intravenous iron. Nephrol. Dial. Transplant. 18 (2003), 141–146.
-
(2003)
Nephrol. Dial. Transplant.
, vol.18
, pp. 141-146
-
-
Silverberg, D.S.1
Wexler, D.2
Blum, M.3
-
31
-
-
85047286793
-
Erythropoietin and diabetes mellitus
-
[31] Maiese, K., Erythropoietin and diabetes mellitus. World J. Diabetes 6 (2015), 1259–1273.
-
(2015)
World J. Diabetes
, vol.6
, pp. 1259-1273
-
-
Maiese, K.1
-
32
-
-
84907986089
-
A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury
-
[32] Yang, C., Xu, Z., Zhao, Z., et al. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim. Biophys. Acta 1842 (2014), 2306–2317.
-
(2014)
Biochim. Biophys. Acta
, vol.1842
, pp. 2306-2317
-
-
Yang, C.1
Xu, Z.2
Zhao, Z.3
-
33
-
-
84965085480
-
ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes
-
[33] Brines, M., Dunne, A.N., van Velzen, M., et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol. Med. 20 (2014), 658–666.
-
(2014)
Mol. Med.
, vol.20
, pp. 658-666
-
-
Brines, M.1
Dunne, A.N.2
van Velzen, M.3
-
34
-
-
79959251277
-
Potential role of nuclear factor kappaB in diabetic cardiomyopathy
-
[34] Lorenzo, O., Picatoste, B., Ares-Carrasco, S., et al. Potential role of nuclear factor kappaB in diabetic cardiomyopathy. Mediat. Inflamm., 2011, 2011, 652097.
-
(2011)
Mediat. Inflamm.
, vol.2011
, pp. 652097
-
-
Lorenzo, O.1
Picatoste, B.2
Ares-Carrasco, S.3
-
35
-
-
34247540770
-
Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice
-
[35] Lewis, P., Stefanovic, N., Pete, J., et al. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115 (2007), 2178–2187.
-
(2007)
Circulation
, vol.115
, pp. 2178-2187
-
-
Lewis, P.1
Stefanovic, N.2
Pete, J.3
-
36
-
-
84950276708
-
Lin28a protects against diabetic cardiomyopathy via the PKA/ROCK2 pathway
-
[36] Sun, S., Zhang, M., Lin, J., et al. Lin28a protects against diabetic cardiomyopathy via the PKA/ROCK2 pathway. Biochem. Biophys. Res. Commun. 469 (2016), 29–36.
-
(2016)
Biochem. Biophys. Res. Commun.
, vol.469
, pp. 29-36
-
-
Sun, S.1
Zhang, M.2
Lin, J.3
-
37
-
-
0027398383
-
Collagen remodelling in myocardia of patients with diabetes
-
[37] Shimizu, M., Umeda, K., Sugihara, N., et al. Collagen remodelling in myocardia of patients with diabetes. J. Clin. Pathol. 46 (1993), 32–36.
-
(1993)
J. Clin. Pathol.
, vol.46
, pp. 32-36
-
-
Shimizu, M.1
Umeda, K.2
Sugihara, N.3
-
38
-
-
0037177171
-
New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment
-
[38] Zile, M.R., Brutsaert, D.L., New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 105 (2002), 1503–1508.
-
(2002)
Circulation
, vol.105
, pp. 1503-1508
-
-
Zile, M.R.1
Brutsaert, D.L.2
-
39
-
-
36049028047
-
Autophagy in cardiovascular disease
-
[39] Martinet, W., Knaapen, M.W., Kockx, M.M., et al. Autophagy in cardiovascular disease. Trends Mol. Med. 13 (2007), 482–491.
-
(2007)
Trends Mol. Med.
, vol.13
, pp. 482-491
-
-
Martinet, W.1
Knaapen, M.W.2
Kockx, M.M.3
|