메뉴 건너뛰기




Volumn 36, Issue , 2017, Pages 1-6

Searching molecular structure databases using tandem MS data: are we there yet?

Author keywords

[No Author keywords available]

Indexed keywords

DATA BASE; DRUG CONFORMATION; LIBRARY; METABOLITE; METABOLOMICS; TANDEM MASS SPECTROMETRY; CHEMICAL DATABASE; CHEMICAL STRUCTURE; SOFTWARE;

EID: 85007174166     PISSN: 13675931     EISSN: 18790402     Source Type: Journal    
DOI: 10.1016/j.cbpa.2016.12.010     Document Type: Review
Times cited : (56)

References (48)
  • 1
    • 0000857494 scopus 로고
    • An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database
    • 1 Eng, J.K., McCormack, A.L., Yates, J.R. III, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5 (1994), 976–989.
    • (1994) J Am Soc Mass Spectrom , vol.5 , pp. 976-989
    • Eng, J.K.1    McCormack, A.L.2    Yates, J.R.3
  • 2
    • 4444335470 scopus 로고    scopus 로고
    • The ABC's (and XYZ's) of peptide sequencing
    • 2 Steen, H., Mann, M., The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol 5 (2004), 699–711.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , pp. 699-711
    • Steen, H.1    Mann, M.2
  • 3
    • 84965146489 scopus 로고    scopus 로고
    • Mass spectral libraries: a statistical review of the visible use
    • 3 Milman, B.L., Zhurkovich, I.K., Mass spectral libraries: a statistical review of the visible use. TrAC Trends Anal Chem 80 (2016), 636–640.
    • (2016) TrAC Trends Anal Chem , vol.80 , pp. 636-640
    • Milman, B.L.1    Zhurkovich, I.K.2
  • 4
    • 84957096258 scopus 로고    scopus 로고
    • Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects
    • 4 Vinaixa, M., Schymanski, E.L., Neumann, S., Navarro, M., Salek, R.M., Yanes, O., Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC Trends Anal Chem 78 (2016), 23–35.
    • (2016) TrAC Trends Anal Chem , vol.78 , pp. 23-35
    • Vinaixa, M.1    Schymanski, E.L.2    Neumann, S.3    Navarro, M.4    Salek, R.M.5    Yanes, O.6
  • 5
    • 84865769818 scopus 로고    scopus 로고
    • Mass spectral reference libraries: an ever-expanding resource for chemical identification
    • 5 Stein, S.E., Mass spectral reference libraries: an ever-expanding resource for chemical identification. Anal Chem 84 (2012), 7274–7282.
    • (2012) Anal Chem , vol.84 , pp. 7274-7282
    • Stein, S.E.1
  • 7
    • 78449296488 scopus 로고    scopus 로고
    • ChemSpider: an online chemical information resource
    • 7 Pence, H.E., Williams, A., ChemSpider: an online chemical information resource. J Chem Educ 87 (2010), 1123–1124.
    • (2010) J Chem Educ , vol.87 , pp. 1123-1124
    • Pence, H.E.1    Williams, A.2
  • 11
    • 84940036737 scopus 로고    scopus 로고
    • MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics
    • Combinatorial prediction of hypothetical metabolites from promiscuous enzyme reactions, using the Biochemical Network Integrated Network Explorer (BNICE) method.
    • 11• Jeffryes, J.G., Colastani, R.L., Elbadawi-Sidhu, M., Kind, T., Niehaus, T.D., Broadbelt, L.J., Hanson, A.D., Fiehn, O., Tyo, K.E.J., Henry, C.S., MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminform, 7, 2015, 44 Combinatorial prediction of hypothetical metabolites from promiscuous enzyme reactions, using the Biochemical Network Integrated Network Explorer (BNICE) method.
    • (2015) J Cheminform , vol.7 , pp. 44
    • Jeffryes, J.G.1    Colastani, R.L.2    Elbadawi-Sidhu, M.3    Kind, T.4    Niehaus, T.D.5    Broadbelt, L.J.6    Hanson, A.D.7    Fiehn, O.8    Tyo, K.E.J.9    Henry, C.S.10
  • 12
    • 85007238701 scopus 로고    scopus 로고
    • Mathematical Chemistry and Chemoinformatics: Structure Generation, Elucidation and Quantitative Structure–Property Relationships
    • De Gruyter Berlin, Boston
    • 12 Kerber, A., Laue, R., Meringer, M., Rücker, C., Schymanski, E., Mathematical Chemistry and Chemoinformatics: Structure Generation, Elucidation and Quantitative Structure–Property Relationships. 2013, De Gruyter, Berlin, Boston.
    • (2013)
    • Kerber, A.1    Laue, R.2    Meringer, M.3    Rücker, C.4    Schymanski, E.5
  • 13
    • 85007174255 scopus 로고    scopus 로고
    • Technical challenges in mass spectrometry-based metabolomics
    • S0052–S0052
    • 13 Matsuda, F., Technical challenges in mass spectrometry-based metabolomics. Mass Spectrom, 5, 2016 S0052–S0052.
    • (2016) Mass Spectrom , vol.5
    • Matsuda, F.1
  • 14
    • 49049121462 scopus 로고    scopus 로고
    • Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra
    • Introduced the idea of searching in a molecular structure database using tandem MS data.
    • 14• Hill, D.W., Kertesz, T.M., Fontaine, D., Friedman, R., Grant, D.F., Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. Anal Chem 80 (2008), 5574–5582 Introduced the idea of searching in a molecular structure database using tandem MS data.
    • (2008) Anal Chem , vol.80 , pp. 5574-5582
    • Hill, D.W.1    Kertesz, T.M.2    Fontaine, D.3    Friedman, R.4    Grant, D.F.5
  • 15
    • 84988585423 scopus 로고    scopus 로고
    • Quantum chemical mass spectrometry: ab initio prediction of electron ionization mass spectra and identification of new fragmentation pathways
    • 15 Cautereels, J., Claeys, M., Geldof, D., Blockhuys, F., Quantum chemical mass spectrometry: ab initio prediction of electron ionization mass spectra and identification of new fragmentation pathways. J Mass Spectrom 51 (2016), 602–614.
    • (2016) J Mass Spectrom , vol.51 , pp. 602-614
    • Cautereels, J.1    Claeys, M.2    Geldof, D.3    Blockhuys, F.4
  • 16
    • 84971643970 scopus 로고    scopus 로고
    • How to compute electron ionization mass spectra from first principles
    • Introduces QCEIMS to predict an electron ionization fragmentation spectrum, given the structure of the compound. Uses Quantum Chemistry and Born–Oppenheimer Molecular Dynamics.
    • 16•• Bauer, C.A., Grimme, S., How to compute electron ionization mass spectra from first principles. J Phys Chem A 120 (2016), 3755–3766 Introduces QCEIMS to predict an electron ionization fragmentation spectrum, given the structure of the compound. Uses Quantum Chemistry and Born–Oppenheimer Molecular Dynamics.
    • (2016) J Phys Chem A , vol.120 , pp. 3755-3766
    • Bauer, C.A.1    Grimme, S.2
  • 17
    • 84878742600 scopus 로고    scopus 로고
    • Towards first principles calculation of electron impact mass spectra of molecules
    • Precursor paper for QCEIMS, introduces the methodic basis.
    • 17• Grimme, S., Towards first principles calculation of electron impact mass spectra of molecules. Angew Chem Int Ed Engl 52 (2013), 6306–6312 Precursor paper for QCEIMS, introduces the methodic basis.
    • (2013) Angew Chem Int Ed Engl , vol.52 , pp. 6306-6312
    • Grimme, S.1
  • 18
    • 84982746832 scopus 로고    scopus 로고
    • Computational prediction of electron ionization mass spectra to assist in GC/MS compound identification
    • CFM-ID is adapted and trained to process GC–MS data, and is therefore one of the few tools that can handle both LC–MS and GC–MS data.
    • 18• Allen, F., Pon, A., Greiner, R., Wishart, D., Computational prediction of electron ionization mass spectra to assist in GC/MS compound identification. Anal Chem 88 (2016), 7689–7697 CFM-ID is adapted and trained to process GC–MS data, and is therefore one of the few tools that can handle both LC–MS and GC–MS data.
    • (2016) Anal Chem , vol.88 , pp. 7689-7697
    • Allen, F.1    Pon, A.2    Greiner, R.3    Wishart, D.4
  • 19
    • 84926363137 scopus 로고    scopus 로고
    • Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification
    • Introduces CFM-ID that predicts a tandem mass spectrum, given the structure of the compound. Uses machine learning and computational statistics.
    • 19•• Allen, F., Greiner, R., Wishart, D., Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11 (2015), 98–110 Introduces CFM-ID that predicts a tandem mass spectrum, given the structure of the compound. Uses machine learning and computational statistics.
    • (2015) Metabolomics , vol.11 , pp. 98-110
    • Allen, F.1    Greiner, R.2    Wishart, D.3
  • 20
    • 84904810329 scopus 로고    scopus 로고
    • CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra
    • 20 Allen, F., Wilson, M., Pon, A., Greiner, R., Wishart, D., CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res 42 (2014), W94–W99.
    • (2014) Nucleic Acids Res , vol.42 , pp. W94-W99
    • Allen, F.1    Wilson, M.2    Pon, A.3    Greiner, R.4    Wishart, D.5
  • 21
    • 84983048041 scopus 로고    scopus 로고
    • Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software
    • Introduces MS-FINDER based on combinatorial fragmentation.
    • 21•• Tsugawa, H., Kind, T., Nakabayashi, R., Yukihira, D., Tanaka, W., Cajka, T., Saito, K., Fiehn, O., Arita, M., Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88 (2016), 7946–7958 Introduces MS-FINDER based on combinatorial fragmentation.
    • (2016) Anal Chem , vol.88 , pp. 7946-7958
    • Tsugawa, H.1    Kind, T.2    Nakabayashi, R.3    Yukihira, D.4    Tanaka, W.5    Cajka, T.6    Saito, K.7    Fiehn, O.8    Arita, M.9
  • 22
    • 84964754404 scopus 로고    scopus 로고
    • Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization
    • Introduces MAGMa+ that uses machine learning to estimate MAGMa parameters.
    • 22• Verdegem, D., Lambrechts, D., Carmeliet, P., Ghesquière, B., Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization. Metabolomics 12 (2016), 1–16 Introduces MAGMa+ that uses machine learning to estimate MAGMa parameters.
    • (2016) Metabolomics , vol.12 , pp. 1-16
    • Verdegem, D.1    Lambrechts, D.2    Carmeliet, P.3    Ghesquière, B.4
  • 23
    • 84956921261 scopus 로고    scopus 로고
    • MetFrag relaunched: incorporating strategies beyond in silico fragmentation
    • Latest version of MetFrag.
    • 23• Ruttkies, C., Schymanski, E.L., Wolf, S., Hollender, J., Neumann, S., MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform, 8, 2016, 3 Latest version of MetFrag.
    • (2016) J Cheminform , vol.8 , pp. 3
    • Ruttkies, C.1    Schymanski, E.L.2    Wolf, S.3    Hollender, J.4    Neumann, S.5
  • 24
    • 84907885060 scopus 로고    scopus 로고
    • MIDAS: a database-searching algorithm for metabolite identification in metabolomics
    • 24 Wang, Y., Kora, G., Bowen, B.P., Pan, C., MIDAS: a database-searching algorithm for metabolite identification in metabolomics. Anal Chem 86 (2014), 9496–9503.
    • (2014) Anal Chem , vol.86 , pp. 9496-9503
    • Wang, Y.1    Kora, G.2    Bowen, B.P.3    Pan, C.4
  • 25
    • 84879199446 scopus 로고    scopus 로고
    • Automatic chemical structure annotation of an LC–MS(n) based metabolic profile from green tea
    • 25 Ridder, L., van der Hooft, J.J.J., Verhoeven, S., de Vos, R.C.H., Bino, R.J., Vervoort, J., Automatic chemical structure annotation of an LC–MS(n) based metabolic profile from green tea. Anal Chem 85 (2013), 6033–6040.
    • (2013) Anal Chem , vol.85 , pp. 6033-6040
    • Ridder, L.1    van der Hooft, J.J.J.2    Verhoeven, S.3    de Vos, R.C.H.4    Bino, R.J.5    Vervoort, J.6
  • 27
    • 77952302069 scopus 로고    scopus 로고
    • In silico fragmentation for computer assisted identification of metabolite mass spectra
    • Introduces MetFrag based on combinatorial fragmentation, the first practical tool for searching with MS data in a structure database.
    • 27•• Wolf, S., Schmidt, S., Müller-Hannemann, M., Neumann, S., In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform, 11, 2010, 148 Introduces MetFrag based on combinatorial fragmentation, the first practical tool for searching with MS data in a structure database.
    • (2010) BMC Bioinform , vol.11 , pp. 148
    • Wolf, S.1    Schmidt, S.2    Müller-Hannemann, M.3    Neumann, S.4
  • 28
    • 84976515064 scopus 로고    scopus 로고
    • Fast metabolite identification with input output kernel regression
    • CSI:FingerID is given a new machine learning fundament, namely Input Output Kernel Regression.
    • 28• Brouard, C., Shen, H., Dührkop, K., d'Alché-Buc, F., Böcker, S., Rousu, J., Fast metabolite identification with input output kernel regression. Bioinformatics 32 (2016), i28–i36 CSI:FingerID is given a new machine learning fundament, namely Input Output Kernel Regression.
    • (2016) Bioinformatics , vol.32 , pp. i28-i36
    • Brouard, C.1    Shen, H.2    Dührkop, K.3    d'Alché-Buc, F.4    Böcker, S.5    Rousu, J.6
  • 29
    • 84944201928 scopus 로고    scopus 로고
    • Searching molecular structure databases with tandem mass spectra using CSI:FingerID
    • Introduces CSI:FingerID that predicts the molecular fingerprint of an unknown compound, given its tandem mass spectrum. Uses fragmentation trees and machine learning.
    • 29•• Dührkop, K., Shen, H., Meusel, M., Rousu, J., Böcker, S., Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A 112 (2015), 12580–12585 Introduces CSI:FingerID that predicts the molecular fingerprint of an unknown compound, given its tandem mass spectrum. Uses fragmentation trees and machine learning.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 12580-12585
    • Dührkop, K.1    Shen, H.2    Meusel, M.3    Rousu, J.4    Böcker, S.5
  • 30
    • 84900839280 scopus 로고    scopus 로고
    • Metabolite identification through multiple kernel learning on fragmentation trees
    • Precursor paper for CSI:FingerID, introduces the methodic basis.
    • 30• Shen, H., Dührkop, K., Böcker, S., Rousu, J., Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics 30 (2014), i157–i164 Precursor paper for CSI:FingerID, introduces the methodic basis.
    • (2014) Bioinformatics , vol.30 , pp. i157-i164
    • Shen, H.1    Dührkop, K.2    Böcker, S.3    Rousu, J.4
  • 31
    • 84866437252 scopus 로고    scopus 로고
    • Metabolite identification and molecular fingerprint prediction via machine learning
    • Introduces FingerID that predicts the molecular fingerprint of an unknown compound; precursor method of CSI:Finger.
    • 31• Heinonen, M., Shen, H., Zamboni, N., Rousu, J., Metabolite identification and molecular fingerprint prediction via machine learning. Bioinformatics 28 (2012), 2333–2341 Introduces FingerID that predicts the molecular fingerprint of an unknown compound; precursor method of CSI:Finger.
    • (2012) Bioinformatics , vol.28 , pp. 2333-2341
    • Heinonen, M.1    Shen, H.2    Zamboni, N.3    Rousu, J.4
  • 33
    • 84954304545 scopus 로고    scopus 로고
    • Mining molecular structure databases: identification of small molecules based on fragmentation mass spectrometry data
    • Epub ahead of print Review covering: candidate molecular structure generation, competitive fragmentation modeling, molecular fingerprint prediction, methods evaluation.
    • 33• Hufsky, F., Böcker, S., Mining molecular structure databases: identification of small molecules based on fragmentation mass spectrometry data. Mass Spectrom Rev, 2016, 10.1002/mas.21489 Epub ahead of print Review covering: candidate molecular structure generation, competitive fragmentation modeling, molecular fingerprint prediction, methods evaluation.
    • (2016) Mass Spectrom Rev
    • Hufsky, F.1    Böcker, S.2
  • 34
    • 84888191935 scopus 로고    scopus 로고
    • Computational mass spectrometry for small molecule fragmentation
    • Review covering: Searching in spectral libraries, rule-based prediction, combinatorial fragmentation, predicting substructures and compound classes, fragmentation trees.
    • 34• Hufsky, F., Scheubert, K., Böcker, S., Computational mass spectrometry for small molecule fragmentation. Trends Anal Chem 53 (2014), 41–48 Review covering: Searching in spectral libraries, rule-based prediction, combinatorial fragmentation, predicting substructures and compound classes, fragmentation trees.
    • (2014) Trends Anal Chem , vol.53 , pp. 41-48
    • Hufsky, F.1    Scheubert, K.2    Böcker, S.3
  • 35
    • 84900862294 scopus 로고    scopus 로고
    • New kids on the block: novel informatics methods for natural product discovery
    • Review covering: merging combinatorial fragmentation and library search by MetFusion, predicting fragmentation spectra by ISIS, fingerprint prediction by FingerID, comparing fragmentation trees by FT-BLAST.
    • 35• Hufsky, F., Scheubert, K., Böcker, S., New kids on the block: novel informatics methods for natural product discovery. Nat Prod Rep 31 (2014), 807–817 Review covering: merging combinatorial fragmentation and library search by MetFusion, predicting fragmentation spectra by ISIS, fingerprint prediction by FingerID, comparing fragmentation trees by FT-BLAST.
    • (2014) Nat Prod Rep , vol.31 , pp. 807-817
    • Hufsky, F.1    Scheubert, K.2    Böcker, S.3
  • 36
    • 60949848601 scopus 로고    scopus 로고
    • Tramp: The Life of Charlie Chaplin
    • Da Capo Press
    • 36 Milton, J., Tramp: The Life of Charlie Chaplin. 1998, Da Capo Press.
    • (1998)
    • Milton, J.1
  • 37
    • 84960364338 scopus 로고    scopus 로고
    • Testing and validation of computational methods for mass spectrometry
    • Some fundamentals of computational methods evaluation.
    • 37• Gatto, L., Hansen, K.D., Hoopmann, M.R., Hermjakob, H., Kohlbacher, O., Beyer, A., Testing and validation of computational methods for mass spectrometry. J Proteome Res 15 (2016), 809–814 Some fundamentals of computational methods evaluation.
    • (2016) J Proteome Res , vol.15 , pp. 809-814
    • Gatto, L.1    Hansen, K.D.2    Hoopmann, M.R.3    Hermjakob, H.4    Kohlbacher, O.5    Beyer, A.6
  • 39
    • 84856157713 scopus 로고    scopus 로고
    • Identification of “known unknowns” utilizing accurate mass data and ChemSpider
    • 39 Little, J.L., Williams, A.J., Pshenichnov, A., Tkachenko, V., Identification of “known unknowns” utilizing accurate mass data and ChemSpider. J Am Soc Mass Spectrom 23 (2012), 179–185.
    • (2012) J Am Soc Mass Spectrom , vol.23 , pp. 179-185
    • Little, J.L.1    Williams, A.J.2    Pshenichnov, A.3    Tkachenko, V.4
  • 40
    • 84864390800 scopus 로고    scopus 로고
    • Protein identification problem from a Bayesian point of view
    • 40 Li, Y.F., Arnold, R.J., Radivojac, P., Tang, H., Protein identification problem from a Bayesian point of view. Stat Interface 5 (2012), 21–37.
    • (2012) Stat Interface , vol.5 , pp. 21-37
    • Li, Y.F.1    Arnold, R.J.2    Radivojac, P.3    Tang, H.4
  • 44
    • 84922080318 scopus 로고    scopus 로고
    • Proposed quantitative and alphanumeric metabolite identification metrics
    • 44 Sumner, L.W., Lei, Z., Nikolau, B.J., Saito, K., Roessner, U., Trengove, R., Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics 10 (2014), 1047–1049.
    • (2014) Metabolomics , vol.10 , pp. 1047-1049
    • Sumner, L.W.1    Lei, Z.2    Nikolau, B.J.3    Saito, K.4    Roessner, U.5    Trengove, R.6
  • 46
    • 35848929694 scopus 로고    scopus 로고
    • Analysis and validation of proteomic data generated by tandem mass spectrometry
    • 46 Nesvizhskii, A.I., Vitek, O., Aebersold, R., Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4 (2007), 787–797.
    • (2007) Nat Methods , vol.4 , pp. 787-797
    • Nesvizhskii, A.I.1    Vitek, O.2    Aebersold, R.3
  • 47
    • 81255144050 scopus 로고    scopus 로고
    • Toward global metabolomics analysis with hydrophilic interaction liquid chromatography–mass spectrometry: improved metabolite identification by retention time prediction
    • 47 Creek, D.J., Jankevics, A., Breitling, R., Watson, D.G., Barrett, M.P., Burgess, K.E.V., Toward global metabolomics analysis with hydrophilic interaction liquid chromatography–mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem 83 (2011), 8703–8710.
    • (2011) Anal Chem , vol.83 , pp. 8703-8710
    • Creek, D.J.1    Jankevics, A.2    Breitling, R.3    Watson, D.G.4    Barrett, M.P.5    Burgess, K.E.V.6
  • 48
    • 84941702773 scopus 로고    scopus 로고
    • PredRet: prediction of retention time by direct mapping between multiple chromatographic systems
    • 48 Stanstrup, J., Neumann, S., Vrhovšek, U., PredRet: prediction of retention time by direct mapping between multiple chromatographic systems. Anal Chem 87 (2015), 9421–9428.
    • (2015) Anal Chem , vol.87 , pp. 9421-9428
    • Stanstrup, J.1    Neumann, S.2    Vrhovšek, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.