메뉴 건너뛰기




Volumn 32, Issue 12, 2016, Pages i28-i36

Fast metabolite identification with Input Output Kernel Regression

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGY; CHEMICAL DATABASE; CHEMICAL STRUCTURE; MACHINE LEARNING; METABOLOMICS; PROCEDURES; TANDEM MASS SPECTROMETRY;

EID: 84976515064     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw246     Document Type: Article
Times cited : (76)

References (34)
  • 1
    • 84904810329 scopus 로고    scopus 로고
    • CFM-ID: A web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra
    • Allen,F. et al. (2014) CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res., 42, W94-W99.
    • (2014) Nucleic Acids Res. , vol.42 , pp. W94-W99
    • Allen, F.1
  • 2
    • 84926363137 scopus 로고    scopus 로고
    • Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification
    • Allen,F. et al. (2015) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics, 11, 98-110.
    • (2015) Metabolomics , vol.11 , pp. 98-110
    • Allen, F.1
  • 3
    • 49549101405 scopus 로고    scopus 로고
    • Towards de novo identification of metabolites by analyzing tandem mass spectra
    • Bö cker,S. and Rasche,F. (2008) Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinfomatics, 24, i49-i55.
    • (2008) Bioinfomatics , vol.24 , pp. i49-i55
    • Bö Cker, S.1    Rasche, F.2
  • 4
    • 54949108677 scopus 로고    scopus 로고
    • PubChem: Integrated platform of small molecules and biological activities
    • Bolton,E. et al. (2008). PubChem: Integrated platform of small molecules and biological activities. Chapter 12 in Annual Reports in Computational Chemistry, vol. 4, pp. 217-241.
    • (2008) Chapter 12 in Annual Reports in Computational Chemistry , vol.4 , pp. 217-241
    • Bolton, E.1
  • 6
    • 84976463154 scopus 로고    scopus 로고
    • Input output kernel regression: Supervised and semisupervised structured output prediction with operator-valued kernels
    • Brouard,C. et al. (2015). Input output kernel regression: supervised and semisupervised structured output prediction with operator-valued kernels. Technical Report hal-01216708.
    • (2015) Technical Report hal-01216708
    • Brouard, C.1
  • 8
    • 84859463794 scopus 로고    scopus 로고
    • Algorithms for learning kernels based on centered alignment
    • Cortes,C. et al. (2012) Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res., 13, 795-828.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 795-828
    • Cortes, C.1
  • 9
    • 84944230099 scopus 로고    scopus 로고
    • Illuminating the dark matter in metabolomics
    • da Silva,R.R. et al. (2015) Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. USA, 112, 12549-12550.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 12549-12550
    • Da Silva, R.R.1
  • 10
    • 84944201928 scopus 로고    scopus 로고
    • Searching molecular structure databases with tandem mass spectra using CSI:FingerID
    • Dü hrkop,K. et al. (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA, 112, 12580-12585.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 12580-12585
    • Dü Hrkop, K.1
  • 11
    • 21844456299 scopus 로고    scopus 로고
    • Learning multiple tasks with kernel methods
    • Evgeniou,T. et al. (2005) Learning multiple tasks with kernel methods. J. Mach. Learn. Res., 6, 615-637.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 615-637
    • Evgeniou, T.1
  • 13
    • 84876560358 scopus 로고    scopus 로고
    • The ChEBI reference database and ontology for biologically relevant chemistry: Enhancements for 2013
    • Hastings,J. et al. (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res., 41, D456-D463.
    • (2013) Nucleic Acids Res. , vol.41 , pp. D456-D463
    • Hastings, J.1
  • 14
    • 56149101337 scopus 로고    scopus 로고
    • FiD: A software for ab initio structural identification of product ions from tandem mass spectrometric data
    • Heinonen,M. et al. (2008) FiD: A software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun. Mass Spectrom., 22, 3043-3052.
    • (2008) Rapid Commun. Mass Spectrom. , vol.22 , pp. 3043-3052
    • Heinonen, M.1
  • 15
    • 84866437252 scopus 로고    scopus 로고
    • Metabolite identification and molecular fingerprint prediction through machine learning
    • Heinonen,M. et al. (2012) Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics, 28, 2333-2341.
    • (2012) Bioinformatics , vol.28 , pp. 2333-2341
    • Heinonen, M.1
  • 16
    • 27544443321 scopus 로고    scopus 로고
    • Automated assignment of highresolution collisionally activated dissociation mass spectra using a systematic bond disconnection approach
    • Hill,A.W. and Mortishire-Smith,R.J. (2005) Automated assignment of highresolution collisionally activated dissociation mass spectra using a systematic bond disconnection approach. Rapid Commun. Mass Spectrom., 19, 3111-3118.
    • (2005) Rapid Commun. Mass Spectrom. , vol.19 , pp. 3111-3118
    • Hill, A.W.1    Mortishire-Smith, R.J.2
  • 17
    • 77954439868 scopus 로고    scopus 로고
    • MassBank: A public repository for sharing mass spectral data for life sciences
    • Horai,H. et al. (2010) MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom., 45, 703-714.
    • (2010) J. Mass Spectrom. , vol.45 , pp. 703-714
    • Horai, H.1
  • 19
    • 84897476865 scopus 로고    scopus 로고
    • A generalized kernel approach to structured output learning
    • Atlanta Usa
    • Kadri,H. et al. (2013) A generalized kernel approach to structured output learning. In International Conference onMachine Learning (ICML), pp. 471-479. Atlanta Usa.
    • (2013) International Conference OnMachine Learning (ICML) , pp. 471-479
    • Kadri, H.1
  • 20
    • 84929472725 scopus 로고    scopus 로고
    • Operator-valued kernel-based vector autoregressive models for network inference
    • Atlanta, USA. Lim,N. et al. (2014) Operator-valued kernel-based vector autoregressive models for network inference. Mach. Learn., 99, 489-513.
    • (2014) Mach. Learn , vol.99 , pp. 489-513
    • Lim, N.1
  • 22
    • 84937885953 scopus 로고    scopus 로고
    • Multilabel structured output learning with random spanning trees of max-margin markov networks
    • Montreal,Canada
    • Marchand,M. et al. (2014) Multilabel structured output learning with random spanning trees of max-margin markov networks. In Advances in Neural Information Processing Systems, pp. 873-881. Montreal, Canada.
    • (2014) Advances in Neural Information Processing Systems , pp. 873-881
    • Marchand, M.1
  • 23
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli,C.A. and Pontil,M.A. (2005) On learning vector-valued functions. Neural Comput., 17, 177-204.
    • (2005) Neural Comput. , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.A.2
  • 24
    • 84879199446 scopus 로고    scopus 로고
    • Automatic chemical structure annotation of an LC-MSn based metabolic profile from green tea
    • Ridder,L. et al. (2013) Automatic chemical structure annotation of an LC-MSn based metabolic profile from green tea. Anal. Chem., 85, 6033-6040.
    • (2013) Anal. Chem. , vol.85 , pp. 6033-6040
    • Ridder, L.1
  • 25
    • 78049465511 scopus 로고    scopus 로고
    • Efficient algorithms for max-margin structured classification
    • MIT Press
    • Rousu, J. et al. (2007) Efficient algorithms for max-margin structured classification. In Predicting Structured Data, pp. 105-129. MIT Press.
    • (2007) Predicting Structured Data , pp. 105-129
    • Rousu, J.1
  • 26
    • 34250422534 scopus 로고
    • Hilbert spaces of operator-valued functions
    • Senkene,E. and Tempel'man,A. (1973) Hilbert spaces of operator-valued functions. Lithuanian Math. J., 13, 665-670.
    • (1973) Lithuanian Math. J , vol.13 , pp. 665-670
    • Senkene, E.1    Tempel'Man, A.2
  • 27
    • 84896700791 scopus 로고    scopus 로고
    • Metabolite identification through machine learning-tackling casmi challenge using fingerid
    • Shen,H. et al. (2013) Metabolite identification through machine learning-tackling CASMI challenge using FingerID. Metabolites, 3, 484-505.
    • (2013) Metabolites , vol.3 , pp. 484-505
    • Shen, H.1
  • 28
    • 84900839280 scopus 로고    scopus 로고
    • Metabolite identification through multiple kernel learning on fragmentation trees
    • Shen,H. et al. (2014) Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics, 30, i157-i164.
    • (2014) Bioinformatics , vol.30 , pp. i157-i164
    • Shen, H.1
  • 29
    • 84928376670 scopus 로고    scopus 로고
    • Multilabel classification through random graph ensembles
    • Su,H. and Rousu,J. (2015) Multilabel classification through random graph ensembles. Mach. Learn., 99, 231-256.
    • (2015) Mach. Learn. , vol.99 , pp. 231-256
    • Su, H.1    Rousu, J.2
  • 31
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • Banff,Canada
    • Tsochantaridis,I. et al. (2004) Support vector machine learning for interdependent and structured output spaces. In International Conference on Machine Learning (ICML), p. 104. Banff, Canada.
    • (2004) International Conference on Machine Learning (ICML) , pp. 104
    • Tsochantaridis, I.1
  • 32
    • 84907885060 scopus 로고    scopus 로고
    • MIDAS: A database-searching algorithm for metabolite identification in metabolomics
    • Wang,Y. et al. (2014) MIDAS: a database-searching algorithm for metabolite identification in metabolomics. Anal. Chem., 86, 9496-9503.
    • (2014) Anal. Chem. , vol.86 , pp. 9496-9503
    • Wang, Y.1
  • 33
    • 84898971943 scopus 로고    scopus 로고
    • Kernel dependency estimation
    • Becker, S. Thrun, S., and Obermayer, K. (eds.) ,MIT Press
    • Weston,J. et al. (2003) Kernel dependency estimation. In Becker, S. Thrun, S., and Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , pp. 15
    • Weston, J.1
  • 34
    • 77952302069 scopus 로고    scopus 로고
    • Silico fragmentation for computer assisted identification of metabolite mass spectra
    • Wolf, S. et al. (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 11, 148.
    • (2010) BMC Bioinformatics , vol.11 , pp. 148
    • Wolf, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.