메뉴 건너뛰기




Volumn 4, Issue PARTS A AND B, 2011, Pages 749-758

Multi-sensor health diagnosis using Deep Belief Network based state classification

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION METHODS; CLASSIFICATION MODELS; COMPLEX ENGINEERED SYSTEMS; DATA SETS; DEEP BELIEF NETWORKS; FAST INFERENCE; HEALTH DIAGNOSIS; HIERARCHICAL STRUCTURES; HIGHER ORDER NETWORKS; LAYER BY LAYER; MULTI SENSOR; OPERATION AND MAINTENANCE; REDUCED COST; RESTRICTED BOLTZMANN MACHINE; SENSORY DATA; STATE CLASSIFICATION; SUCCESSIVE LEARNING; TRAINING AND TESTING;

EID: 84863569708     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1115/DETC2011-48352     Document Type: Conference Paper
Times cited : (19)

References (30)
  • 2
    • 0030106093 scopus 로고    scopus 로고
    • Applications of maintenance optimization models: A review and analysis
    • R. Dekker, "Applications of maintenance optimization models: a review and analysis," Reliability Engineering System Safety, Vol. 51, pp. 229-240, 1996.
    • (1996) Reliability Engineering System Safety , vol.51 , pp. 229-240
    • Dekker, R.1
  • 4
    • 0034553001 scopus 로고    scopus 로고
    • Gamma distribution parameter estimation for field reliability data with missing failure times
    • D.W. Coit and T. Jin, "Gamma distribution parameter estimation for field reliability data with missing failure times," IIE Transactions, Vol. 32, no.12, pp. 1161-1166, 2000.
    • (2000) IIE Transactions , vol.32 , Issue.12 , pp. 1161-1166
    • Coit, D.W.1    Jin, T.2
  • 5
    • 0034659595 scopus 로고    scopus 로고
    • Perspectives and challenges for research in quality and reliability engineering
    • E. A. Elsayed, "Perspectives and challenges for research in quality and reliability engineering," International Journal of Production Research, Vol. 38, no. 9, pp. 1953-1976, 2000.
    • (2000) International Journal of Production Research , vol.38 , Issue.9 , pp. 1953-1976
    • Elsayed, E.A.1
  • 6
    • 0027585736 scopus 로고
    • Monitoring and diagnosis of rolling element bearings using artificial neural networks
    • Apr.
    • I. E. Alguindigue, A. Loskiewicz-Buczak, and R. E. Uhrig, "Monitoring and diagnosis of rolling element bearings using artificial neural networks,"IEEE Transactions Industrial Electronics, Vol. 40, no. 2, pp. 209-217, Apr. 1993.
    • (1993) IEEE Transactions Industrial Electronics , vol.40 , Issue.2 , pp. 209-217
    • Alguindigue, I.E.1    Loskiewicz-Buczak, A.2    Uhrig, R.E.3
  • 8
    • 0032817026 scopus 로고    scopus 로고
    • Dynamic prognostic prediction of defect propagation on rolling element bearings
    • Y. Li, S. Billington, and C. Zhang, "Dynamic prognostic prediction of defect propagation on rolling element bearings," Lubrication Engineering, Vol. 42, no. 2, pp. 385-392, 1999.
    • (1999) Lubrication Engineering , vol.42 , Issue.2 , pp. 385-392
    • Li, Y.1    Billington, S.2    Zhang, C.3
  • 9
    • 0028433976 scopus 로고
    • Review by discussion of condition monitoring and fault diagnosis in machine tools
    • K. F. Martin, "Review by discussion of condition monitoring and fault diagnosis in machine tools," International Journal of Machine Tools Manufacturing, vol. 34, no. 4, pp. 527-551, 1994.
    • (1994) International Journal of Machine Tools Manufacturing , vol.34 , Issue.4 , pp. 527-551
    • Martin, K.F.1
  • 10
    • 0032494993 scopus 로고    scopus 로고
    • The use of artificial neural networks for condition monitoring of electrical power transformers
    • C. Booth and J. R. McDonald, "The use of artificial neural networks for condition monitoring of electrical power transformers," Neuro-Computing, Vol. 23, pp. 97-109, 1998.
    • (1998) Neuro-Computing , vol.23 , pp. 97-109
    • Booth, C.1    McDonald, J.R.2
  • 11
    • 0042009280 scopus 로고    scopus 로고
    • Analytical approach to wear rate determination for internal combustion engine condition monitoring based on oil analysis
    • V. Macian, B. Tormos, P. Olmeda, and L. Montoro, "Analytical approach to wear rate determination for internal combustion engine condition monitoring based on oil analysis," Tribology International, Vol. 36, no. 10, pp. 771-776, 2003.
    • (2003) Tribology International , vol.36 , Issue.10 , pp. 771-776
    • MacIan, V.1    Tormos, B.2    Olmeda, P.3    Montoro, L.4
  • 12
    • 33749663808 scopus 로고    scopus 로고
    • Residual life predictions for ball bearings based on self- organizing map and back propagation neural network methods
    • R. Huang, L. Xi, X. Li, C. Richard Liu, H. Qiu and J. Lee, "Residual Life Predictions for Ball Bearings Based on Self- Organizing Map and Back Propagation Neural Network Methods," Mechanical Systems and Signal Processing, Vol. 21, pp. 193-207, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 193-207
    • Huang, R.1    Xi, L.2    Li, X.3    Richard Liu, C.4    Qiu, H.5    Lee, J.6
  • 14
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta, "Gear Fault Detection Using Artificial Neural Networks and Support Vector Machines with Genetic Algorithms," Mechanical Systems and Signal Processing, Vol. 18, pp. 625-644, 2004.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 625-644
    • Samanta, B.1
  • 15
    • 33750962698 scopus 로고    scopus 로고
    • Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems
    • A. Saxena and A. Saad, "Evolving an Artificial Neural Network Classifier for Condition Monitoring of Rotating Mechanical Systems," Applied Soft Computing, Vol. 7, pp. 441-454, 2007.
    • (2007) Applied Soft Computing , vol.7 , pp. 441-454
    • Saxena, A.1    Saad, A.2
  • 16
    • 4344683640 scopus 로고    scopus 로고
    • Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines
    • B.S. Yang, W.W. Hwang, D.J. Kim and A. Chit Tan, "Condition Classification of Small Reciprocating Compressor for Refrigerators Using Artificial Neural Networks and Support Vector Machines," Mechanical Systems and Signal Processing, Vol. 19, pp. 371-390, 2005.
    • (2005) Mechanical Systems and Signal Processing , vol.19 , pp. 371-390
    • Yang, B.S.1    Hwang, W.W.2    Kim, D.J.3    Chit Tan, A.4
  • 17
    • 28844433590 scopus 로고    scopus 로고
    • Modified self- organising map for automated novelty detection applied to vibration signal monitoring
    • M. Wong, L. B. Jack and A. K. Nandi, "Modified Self- Organising Map for Automated Novelty Detection Applied to Vibration Signal Monitoring," Mechanical Systems and Signal Processing, Vol. 20, pp. 593-610, 2006.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 593-610
    • Wong, M.1    Jack, L.B.2    Nandi, A.K.3
  • 18
    • 79960702346 scopus 로고    scopus 로고
    • Dynamic modelling for condition monitoring of gas turbines: Genetic algorithms approach
    • T. Breikin, G. Kulikov, V. Arkov and P. Fleming, "Dynamic Modelling for Condition Monitoring of Gas Turbines: Genetic Algorithms Approach," in 16th IFAC World Congress, 2005.
    • (2005) 16th IFAC World Congress
    • Breikin, T.1    Kulikov, G.2    Arkov, V.3    Fleming, P.4
  • 19
    • 34047276831 scopus 로고    scopus 로고
    • Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades
    • P. M. Pawar and R. Ganguli, "Genetic Fuzzy System for Online Structural Health Monitoring of Composite Helicopter Rotor Blades," Mechanical Systems and Signal Processing, Vol. 21, pp. 2212-2236, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2212-2236
    • Pawar, P.M.1    Ganguli, R.2
  • 20
    • 0345566447 scopus 로고    scopus 로고
    • Fault diagnosis using support vector machine with an application in sheet metal stamping operations
    • M. Ge, R. Du, G. Zhang and Y. Xu, "Fault Diagnosis Using Support Vector Machine with an Application in Sheet Metal Stamping Operations," Mechanical Systems and Signal Processing, Vol. 18, pp. 143-159, 2004.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 143-159
    • Ge, M.1    Du, R.2    Zhang, G.3    Xu, Y.4
  • 21
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasion, A. Rafsanjani, A. Farshidianfar and N. Irani, "Rolling Element Bearings Multi-Fault Classification Based on the Wavelet Denoising and Support Vector Machine," Mechanical Systems and Signal Processing, Vol. 21, pp. 2933-2945, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4
  • 22
    • 84920517709 scopus 로고    scopus 로고
    • A probabilistic detectability-based structural sensor network design methodology for prognostics and health management
    • presented at the
    • P. Wang, B. D. Youn and C. Hu, "A Probabilistic Detectability-Based Structural Sensor Network Design Methodology for Prognostics and Health Management," presented at the Annual Conference of the Prognostics and Health Management Society, 2010.
    • (2010) Annual Conference of the Prognostics and Health Management Society
    • Wang, P.1    Youn, B.D.2    Hu, C.3
  • 23
    • 2942642522 scopus 로고    scopus 로고
    • Multiclassification of tool wear with support vector machine by manufacturing loss consideration
    • J. Sun, M. Rahman, Y. Wong and G. Hong, "Multiclassification of Tool Wear with Support Vector Machine by Manufacturing Loss Consideration," International Journal of Machine Tools and Manufacture, Vol. 44, pp. 1179-1187, 2004.
    • (2004) International Journal of Machine Tools and Manufacture , vol.44 , pp. 1179-1187
    • Sun, J.1    Rahman, M.2    Wong, Y.3    Hong, G.4
  • 25
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero and Y. W. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, Vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 26
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • G. Hinton, "A Practical Guide to Training Restricted Boltzmann Machines," Momentum, Vol. 9, p. 1, 2010.
    • (2010) Momentum , vol.9 , pp. 1
    • Hinton, G.1
  • 27
  • 28
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Montreal, Canada
    • H. Lee, R. Grosse, R. Ranganath and A. Y. Ng, "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations," in International Conference on Machine Learning, Montreal, Canada, 2009, pp. 609-616.
    • (2009) International Conference on Machine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 30
    • 34547395399 scopus 로고    scopus 로고
    • Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring
    • X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, and J. L. Rose, "Active Health Monitoring of an Aircraft Wing with Embedded Piezoelectric Sensor/Actuator Network: I. Defect Detection, Localization and Growth Monitoring," Smart Materials and Structures, Vol. 16, p. 1208, 2007.
    • (2007) Smart Materials and Structures , vol.16 , pp. 1208
    • Zhao, X.1    Gao, H.2    Zhang, G.3    Ayhan, B.4    Yan, F.5    Kwan, C.6    Rose, J.L.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.