-
1
-
-
0037315590
-
Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis
-
Hamilton WA. 2003. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65-76. http://dx.doi.org/10.1080/0892701021000041078.
-
(2003)
Biofouling
, vol.19
, pp. 65-76
-
-
Hamilton, W.A.1
-
2
-
-
2942574679
-
Biocorrosion: towards understanding interactions between biofilms and metals
-
Beech IB, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181-186. http://dx.doi.org/10.1016/j.copbio.2004.05.001.
-
(2004)
Curr Opin Biotechnol
, vol.15
, pp. 181-186
-
-
Beech, I.B.1
Sunner, J.2
-
3
-
-
24944487936
-
Microbiologically influenced corrosion: looking to the future
-
Videla HA, Herrera LK. 2005. Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169-180.
-
(2005)
Int Microbiol
, vol.8
, pp. 169-180
-
-
Videla, H.A.1
Herrera, L.K.2
-
4
-
-
0041661958
-
Microbial iron respiration: impacts on corrosion processes
-
Lee AK, Newman DK. 2003. Microbial iron respiration: impacts on corrosion processes. Appl Microbiol Biotechnol 62:134-139. http://dx.doi.org/10.1007/s00253-003-1314-7.
-
(2003)
Appl Microbiol Biotechnol
, vol.62
, pp. 134-139
-
-
Lee, A.K.1
Newman, D.K.2
-
5
-
-
0038291605
-
Role of Brucella sp. and Gallionella sp. in oil degradation and corrosion
-
Muthukumar N, Mohanan S, Maruthamuthu S, Subramanian P, Palaniswamy N, Raghavan M. 2003. Role of Brucella sp. and Gallionella sp. in oil degradation and corrosion. Electrochem Comm 5:422-427. http://dx.doi.org/10.1016/S1388-2481(03)00093-6.
-
(2003)
Electrochem Comm
, vol.5
, pp. 422-427
-
-
Muthukumar, N.1
Mohanan, S.2
Maruthamuthu, S.3
Subramanian, P.4
Palaniswamy, N.5
Raghavan, M.6
-
6
-
-
0141705429
-
Characterization of microbial communities in gas industry pipelines
-
Zhu XY, Lubeck J, Kilbane JJ. 2003. Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69:5354-5363. http://dx.doi.org/10.1128/AEM.69.9.5354-5363.2003.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 5354-5363
-
-
Zhu, X.Y.1
Lubeck, J.2
Kilbane, J.J.3
-
7
-
-
77749260571
-
Ironcorroding methanogen isolated from a crude-oil storage tank
-
Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S. 2010. Ironcorroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783-1788. http://dx.doi.org/10.1128/AEM.00668-09.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 1783-1788
-
-
Uchiyama, T.1
Ito, K.2
Mori, K.3
Tsurumaru, H.4
Harayama, S.5
-
8
-
-
80055093294
-
Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon-and Zetaproteobacteria in Pacific Ocean coastal seawaters
-
Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG. 2011. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon-and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol 13:3059-3074. http://dx.doi.org/10.1111/j.1462-2920.2011.02583.x.
-
(2011)
Environ Microbiol
, vol.13
, pp. 3059-3074
-
-
Dang, H.1
Chen, R.2
Wang, L.3
Shao, S.4
Dai, L.5
Ye, Y.6
Guo, L.7
Huang, G.8
Klotz, M.G.9
-
9
-
-
79953171916
-
Neutrophilic iron-oxidizing 'Zetaproteobacteria' and mild steel corrosion in nearshore marine environments
-
McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D. 2011. Neutrophilic iron-oxidizing 'Zetaproteobacteria' and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77:1405-1412. http://dx.doi.org/10.1128/AEM.02095-10.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 1405-1412
-
-
McBeth, J.M.1
Little, B.J.2
Ray, R.I.3
Farrar, K.M.4
Emerson, D.5
-
10
-
-
28844468912
-
Biofouling and biocorrosion in industrial water systems
-
Coetser SE, Cloete TE. 2005. Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 31:213-232. http://dx.doi.org/10.1080/10408410500304074.
-
(2005)
Crit Rev Microbiol
, vol.31
, pp. 213-232
-
-
Coetser, S.E.1
Cloete, T.E.2
-
11
-
-
0001542642
-
Corrosion by the sulphate-reducing bacteria
-
King RA, Miller JDA. 1971. Corrosion by the sulphate-reducing bacteria. Nature 233:491-492. http://dx.doi.org/10.1038/233491a0.
-
(1971)
Nature
, vol.233
, pp. 491-492
-
-
King, R.A.1
Miller, J.D.A.2
-
13
-
-
1542378939
-
Iron corrosion by novel anaerobic microorganisms
-
Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. 2004. Iron corrosion by novel anaerobic microorganisms. Nature 427: 829-832. http://dx.doi.org/10.1038/nature02321.
-
(2004)
Nature
, vol.427
, pp. 829-832
-
-
Dinh, H.T.1
Kuever, J.2
Mussmann, M.3
Hassel, A.W.4
Stratmann, M.5
Widdel, F.6
-
14
-
-
77956648802
-
Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities
-
Mori K, Tsurumaru H, Harayama S. 2010. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110:426-430. http://dx.doi.org/10.1016/j.jbiosc.2010.04.012.
-
(2010)
J Biosci Bioeng
, vol.110
, pp. 426-430
-
-
Mori, K.1
Tsurumaru, H.2
Harayama, S.3
-
15
-
-
84863216374
-
Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust
-
Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F. 2012. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14:1772-1787. http://dx.doi.org/10.1111/j.1462-2920.2012.02778.x.
-
(2012)
Environ Microbiol
, vol.14
, pp. 1772-1787
-
-
Enning, D.1
Venzlaff, H.2
Garrelfs, J.3
Dinh, H.T.4
Meyer, V.5
Mayrhofer, K.6
Hassel, A.W.7
Stratmann, M.8
Widdel, F.9
-
16
-
-
84869496805
-
Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
-
Venzlaff H, Enning D, Srinivasan J, Mayrhofer K, Hassel AW, Widdel F, Stratmann M. 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88-96. http://dx.doi.org/10.1016/j.corsci.2012.09.006.
-
(2013)
Corros Sci
, vol.66
, pp. 88-96
-
-
Venzlaff, H.1
Enning, D.2
Srinivasan, J.3
Mayrhofer, K.4
Hassel, A.W.5
Widdel, F.6
Stratmann, M.7
-
17
-
-
84893422464
-
Corrosion of iron by sulfate-reducing bacteria: new views of an old problem
-
Enning D, Garrelfs J. 2014. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226-1236. http://dx.doi.org/10.1128/AEM.02848-13.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 1226-1236
-
-
Enning, D.1
Garrelfs, J.2
-
18
-
-
0034088049
-
Carbon steel corrosion by iron oxidizing and sulphate reducing bacteria in a freshwater cooling system
-
Rao TS, Sairam N, Viswanathan B, Nair KVK. 2000. Carbon steel corrosion by iron oxidizing and sulphate reducing bacteria in a freshwater cooling system. Corros Sci 42:1417-1431. http://dx.doi.org/10.1016/S0010-938X(99)00141-9.
-
(2000)
Corros Sci
, vol.42
, pp. 1417-1431
-
-
Rao, T.S.1
Sairam, N.2
Viswanathan, B.3
Nair, K.V.K.4
-
19
-
-
1042301696
-
Microbiologically influenced corrosion capability of bacteria isolated from Yucca Mountain
-
Pitonzo BJ, Castro P, Amy PS, Southam G, Jones DA, Ringelberg D. 2004. Microbiologically influenced corrosion capability of bacteria isolated from Yucca Mountain. Corrosion 60:64-74. http://dx.doi.org/10.5006/1.3299233.
-
(2004)
Corrosion
, vol.60
, pp. 64-74
-
-
Pitonzo, B.J.1
Castro, P.2
Amy, P.S.3
Southam, G.4
Jones, D.A.5
Ringelberg, D.6
-
20
-
-
76649096993
-
Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines
-
Rajasekar A, Anandkumar B, Maruthamuthu S, Ting YP, Rahman PK. 2010. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotechnol 85: 1175-1188. http://dx.doi.org/10.1007/s00253-009-2289-9.
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 1175-1188
-
-
Rajasekar, A.1
Anandkumar, B.2
Maruthamuthu, S.3
Ting, Y.P.4
Rahman, P.K.5
-
21
-
-
84902107299
-
Critical review: microbially influenced corrosion of buried carbon steel pipes
-
Usher KM, Kaksonen AH, Cole I, Marney D. 2014. Critical review: microbially influenced corrosion of buried carbon steel pipes. Int Biodeteriol Biodegr 93:84-106. http://dx.doi.org/10.1016/j.ibiod.2014.05.007.
-
(2014)
Int Biodeteriol Biodegr
, vol.93
, pp. 84-106
-
-
Usher, K.M.1
Kaksonen, A.H.2
Cole, I.3
Marney, D.4
-
22
-
-
56849134302
-
Carbon dioxide corrosion and acetate: a hypothesis on the influence of microorganisms
-
Suflita JM, Phelps TJ, Little B. 2008. Carbon dioxide corrosion and acetate: a hypothesis on the influence of microorganisms. Corros Sci 64: 854-859. http://dx.doi.org/10.5006/1.3279919.
-
(2008)
Corros Sci
, vol.64
, pp. 854-859
-
-
Suflita, J.M.1
Phelps, T.J.2
Little, B.3
-
23
-
-
84905166119
-
The role of acetogens in microbially influenced corrosion of steel
-
Mand J, Park HS, Jack TR, Voordouw G. 2014. The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 5:268. http://dx.doi.org/10.3389/fmicb.2014.00268.
-
(2014)
Front Microbiol
, vol.5
, pp. 268
-
-
Mand, J.1
Park, H.S.2
Jack, T.R.3
Voordouw, G.4
-
24
-
-
0034068152
-
Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate
-
Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. 2000. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50(Pt 2):771-779. http://dx.doi.org/10.1099/00207713-50-2-771.
-
(2000)
Int J Syst Evol Microbiol
, vol.50
, pp. 771-779
-
-
Sekiguchi, Y.1
Kamagata, Y.2
Nakamura, K.3
Ohashi, A.4
Harada, H.5
-
25
-
-
9744248282
-
Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community
-
Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y. 2004. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043-2047. http://dx.doi.org/10.1099/ijs.0.63148-0.
-
(2004)
Int J Syst Evol Microbiol
, vol.54
, pp. 2043-2047
-
-
Kato, S.1
Haruta, S.2
Cui, Z.J.3
Ishii, M.4
Yokota, A.5
Igarashi, Y.6
-
26
-
-
78650041189
-
Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals
-
Kato S, Kai F, Nakamura R, Watanabe K, Hashimoto K. 2010. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals. Environ Microbiol 12:3114-3123. http://dx.doi.org/10.1111/j.1462-2920.2010.02284.x.
-
(2010)
Environ Microbiol
, vol.12
, pp. 3114-3123
-
-
Kato, S.1
Kai, F.2
Nakamura, R.3
Watanabe, K.4
Hashimoto, K.5
-
27
-
-
0032189023
-
Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation
-
Dojka MA, Hugenholtz P, Haack SK, Pace NR. 1998. Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869-3877.
-
(1998)
Appl Environ Microbiol
, vol.64
, pp. 3869-3877
-
-
Dojka, M.A.1
Hugenholtz, P.2
Haack, S.K.3
Pace, N.R.4
-
28
-
-
33644606606
-
FastGroupII: a webbased bioinformatics platform for analyses of large 16S rDNA libraries
-
Yu Y, Breitbart M, McNairnie P, Rohwer F. 2006. FastGroupII: a webbased bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57. http://dx.doi.org/10.1186/1471-2105-7-57.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 57
-
-
Yu, Y.1
Breitbart, M.2
McNairnie, P.3
Rohwer, F.4
-
29
-
-
34548293679
-
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
-
Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261-5267. http://dx.doi.org/10.1128/AEM.00062-07.
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 5261-5267
-
-
Wang, Q.1
Garrity, G.M.2
Tiedje, J.M.3
Cole, J.R.4
-
30
-
-
0025183708
-
Basic local alignment search tool
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403-410.
-
(1990)
J Mol Biol
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
31
-
-
84904550975
-
Physiological and transcriptomic analyses of a thermophilic, aceticlastic methanogen Methanosaeta thermophila responding to ammonia stress
-
Kato S, Sasaki K, Watanabe K, Yumoto I, Kamagata Y. 2014. Physiological and transcriptomic analyses of a thermophilic, aceticlastic methanogen Methanosaeta thermophila responding to ammonia stress. Microbes Environ 29:162-167. http://dx.doi.org/10.1264/jsme2.ME14021.
-
(2014)
Microbes Environ
, vol.29
, pp. 162-167
-
-
Kato, S.1
Sasaki, K.2
Watanabe, K.3
Yumoto, I.4
Kamagata, Y.5
-
32
-
-
0000816704
-
Rapid assay for microbially reducible ferric iron in aquatic sediments
-
Lovley DR, Phillips EJ. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536-1540.
-
(1987)
Appl Environ Microbiol
, vol.53
, pp. 1536-1540
-
-
Lovley, D.R.1
Phillips, E.J.2
-
33
-
-
13244281776
-
Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer
-
Basso O, Caumette P, Magot M. 2005. Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 55:101-104. http://dx.doi.org/10.1099/ijs.0.63303-0.
-
(2005)
Int J Syst Evol Microbiol
, vol.55
, pp. 101-104
-
-
Basso, O.1
Caumette, P.2
Magot, M.3
-
34
-
-
0003688056
-
Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum
-
Schauder R, Preuß A, Jetten MS, Fuchs G. 1988. Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151:84-89. http://dx.doi.org/10.1007/BF00444674.
-
(1988)
Arch Microbiol
, vol.151
, pp. 84-89
-
-
Schauder, R.1
Preuß, A.2
Jetten, M.S.3
Fuchs, G.4
-
35
-
-
79955018515
-
Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47
-
Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU. 2011. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 13:1125-1137. http://dx.doi.org/10.1111/j.1462-2920.2010.02391.x.
-
(2011)
Environ Microbiol
, vol.13
, pp. 1125-1137
-
-
Bergmann, F.1
Selesi, D.2
Weinmaier, T.3
Tischler, P.4
Rattei, T.5
Meckenstock, R.U.6
-
36
-
-
77649235028
-
Microbial electrolysis cell with a microbial biocathode
-
Jeremiasse AW, Hamelers HV, Buisman CJ. 2010. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39-43. http://dx.doi.org/10.1016/j.bioelechem.2009.05.005.
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 39-43
-
-
Jeremiasse, A.W.1
Hamelers, H.V.2
Buisman, C.J.3
-
37
-
-
77957377821
-
Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria
-
Parameswaran P, Torres CI, Lee HS, Rittmann BE, Krajmalnik-Brown R. 2011. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria. Bioresour Technol 102: 263-271. http://dx.doi.org/10.1016/j.biortech.2010.03.133.
-
(2011)
Bioresour Technol
, vol.102
, pp. 263-271
-
-
Parameswaran, P.1
Torres, C.I.2
Lee, H.S.3
Rittmann, B.E.4
Krajmalnik-Brown, R.5
-
38
-
-
84866148210
-
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
-
Pisciotta JM, Zaybak Z, Call DF, Nam JY, Logan BE. 2012. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol 78:5212-5219. http://dx.doi.org/10.1128/AEM.00480-12.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 5212-5219
-
-
Pisciotta, J.M.1
Zaybak, Z.2
Call, D.F.3
Nam, J.Y.4
Logan, B.E.5
-
39
-
-
0001375592
-
Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov
-
Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388-396. http://dx.doi.org/10.1007/BF00408385.
-
(1984)
Arch Microbiol
, vol.139
, pp. 388-396
-
-
Möller, B.1
Oßmer, R.2
Howard, B.H.3
Gottschalk, G.4
Hippe, H.5
-
40
-
-
0031034120
-
Clostridium pascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan
-
Wilde E, Collins MD, Hippe H. 1997. Clostridium pascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan. Int J Syst Bacteriol 47:164-170. http://dx.doi.org/10.1099/00207713-47-1-164.
-
(1997)
Int J Syst Bacteriol
, vol.47
, pp. 164-170
-
-
Wilde, E.1
Collins, M.D.2
Hippe, H.3
-
41
-
-
0021338264
-
Clostridium magnum sp. nov., a nonautotrophic homoacetogenic bacterium
-
Schink B. 1984. Clostridium magnum sp. nov., a nonautotrophic homoacetogenic bacterium. Arch Microbiol 137:250-255. http://dx.doi.org/10.1007/BF00414553.
-
(1984)
Arch Microbiol
, vol.137
, pp. 250-255
-
-
Schink, B.1
-
42
-
-
80052049827
-
2 utilization in Italian rice field soil
-
2 utilization in Italian rice field soil. ISME J 5:1526-1539. http://dx.doi.org/10.1038/ismej.2011.17.
-
(2011)
ISME J
, vol.5
, pp. 1526-1539
-
-
Liu, F.1
Conrad, R.2
-
43
-
-
84905011427
-
Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
-
Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM. 2014. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J 8:1673-1681. http://dx.doi.org/10.1038/ismej.2014.82.
-
(2014)
ISME J
, vol.8
, pp. 1673-1681
-
-
Lohner, S.T.1
Deutzmann, J.S.2
Logan, B.E.3
Leigh, J.4
Spormann, A.M.5
-
44
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. 2011. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882-2886. http://dx.doi.org/10.1128/AEM.02642-10.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
Summers, Z.M.4
Ou, J.5
Woodard, T.L.6
Snoeyenbos-West, O.L.7
Lovley, D.R.8
-
45
-
-
58249100149
-
Self-constructed electrically conductive bacterial networks
-
Nakamura R, Kai F, Okamoto A, Newton GJ, Hashimoto K. 2009. Self-constructed electrically conductive bacterial networks. Angew Chem Int Ed Engl 48:508-511. http://dx.doi.org/10.1002/anie.200804750.
-
(2009)
Angew Chem Int Ed Engl
, vol.48
, pp. 508-511
-
-
Nakamura, R.1
Kai, F.2
Okamoto, A.3
Newton, G.J.4
Hashimoto, K.5
-
46
-
-
77949872614
-
Biological iron-monosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium
-
Nakamura R, Okamoto A, Tajima N, Newton GJ, Kai F, Takashima T, Hashimoto K. 2010. Biological iron-monosulfide production for efficient electricity harvesting from a deep-sea metal-reducing bacterium. Chem-BioChem 11:643-645. http://dx.doi.org/10.1002/cbic.200900775.
-
(2010)
Chem-BioChem
, vol.11
, pp. 643-645
-
-
Nakamura, R.1
Okamoto, A.2
Tajima, N.3
Newton, G.J.4
Kai, F.5
Takashima, T.6
Hashimoto, K.7
-
47
-
-
84875147230
-
Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp
-
Kato S, Hashimoto K, Watanabe K. 2013. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp. Microbes Environ 28:141-148. http://dx.doi.org/10.1264/jsme2.ME12161.
-
(2013)
Microbes Environ
, vol.28
, pp. 141-148
-
-
Kato, S.1
Hashimoto, K.2
Watanabe, K.3
-
48
-
-
78649707496
-
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
-
Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. 2010. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413-1415. http://dx.doi.org/10.1126/science.1196526.
-
(2010)
Science
, vol.330
, pp. 1413-1415
-
-
Summers, Z.M.1
Fogarty, H.E.2
Leang, C.3
Franks, A.E.4
Malvankar, N.S.5
Lovley, D.R.6
-
49
-
-
84862535140
-
Microbial interspecies electron transfer via electric currents through conductive minerals
-
Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci U S A 109:10042-10046. http://dx.doi.org/10.1073/pnas.1117592109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 10042-10046
-
-
Kato, S.1
Hashimoto, K.2
Watanabe, K.3
-
50
-
-
80052564960
-
Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
-
e00159-11
-
Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR. 2011. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2:e00159-11. http://dx.doi.org/10.1128/mBio.00159-11.
-
(2011)
mBio
, vol.2
-
-
Morita, M.1
Malvankar, N.S.2
Franks, A.E.3
Summers, Z.M.4
Giloteaux, L.5
Rotaru, A.E.6
Rotaru, C.7
Lovley, D.R.8
-
51
-
-
84862886537
-
Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals
-
Kato S, Hashimoto K, Watanabe K. 2012. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14:1646-1654. http://dx.doi.org/10.1111/j.1462-2920.2011.02611.x.
-
(2012)
Environ Microbiol
, vol.14
, pp. 1646-1654
-
-
Kato, S.1
Hashimoto, K.2
Watanabe, K.3
-
52
-
-
84874730122
-
Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes
-
Aulenta F, Rossetti S, Amalfitano S, Majone M, Tandoi V. 2013. Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes. ChemSusChem 6:433-436. http://dx.doi.org/10.1002/cssc.201200748.
-
(2013)
ChemSusChem
, vol.6
, pp. 433-436
-
-
Aulenta, F.1
Rossetti, S.2
Amalfitano, S.3
Majone, M.4
Tandoi, V.5
|