-
1
-
-
0000253782
-
Physiological Ecology of Methanogens
-
Springer US, Boston, MA, J.G. Ferry (Ed.)
-
Zinder S.H. Physiological Ecology of Methanogens. Methanogenesis 1993, 128-206. Springer US, Boston, MA. J.G. Ferry (Ed.).
-
(1993)
Methanogenesis
, pp. 128-206
-
-
Zinder, S.H.1
-
2
-
-
44449149379
-
Life close to the thermodynamic limit: how methanogenic archaea conserve energy
-
Springer Berlin Heidelberg, Berlin, Heidelberg, G. Schäfer, H.S. Penefsky (Eds.)
-
Deppenmeier U., Müller V. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Bioenergetics 2008, 123-152. Springer Berlin Heidelberg, Berlin, Heidelberg. G. Schäfer, H.S. Penefsky (Eds.).
-
(2008)
Bioenergetics
, pp. 123-152
-
-
Deppenmeier, U.1
Müller, V.2
-
3
-
-
33644947596
-
Exocellular electron transfer in anaerobic microbial communities
-
Stams A.J.M., de Bok F.A.M., Plugge C.M., van Eekert M.H.A., Dolfing J., Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol. 2006, 8:371-382.
-
(2006)
Environ. Microbiol.
, vol.8
, pp. 371-382
-
-
Stams, A.J.M.1
de Bok, F.A.M.2
Plugge, C.M.3
van Eekert, M.H.A.4
Dolfing, J.5
Schraa, G.6
-
5
-
-
1542378939
-
Iron corrosion by novel anaerobic microorganisms
-
Dinh H.T., Kuever J., Mußmann M., Hassel A.W., Stratmann M., Widdel F. Iron corrosion by novel anaerobic microorganisms. Nature 2004, 427:829-832.
-
(2004)
Nature
, vol.427
, pp. 829-832
-
-
Dinh, H.T.1
Kuever, J.2
Mußmann, M.3
Hassel, A.W.4
Stratmann, M.5
Widdel, F.6
-
6
-
-
77749260571
-
Iron-corroding methanogen isolated from a crude-oil storage tank
-
Uchiyama T., Ito K., Mori K., Tsurumaru H., Harayama S. Iron-corroding methanogen isolated from a crude-oil storage tank. Appl. Environ. Microbiol. 2010, 76:1783-1788.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 1783-1788
-
-
Uchiyama, T.1
Ito, K.2
Mori, K.3
Tsurumaru, H.4
Harayama, S.5
-
7
-
-
84863216374
-
Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust
-
Enning D., Venzlaff H., Garrelfs J., Dinh H.T., Meyer V., Mayrhofer K., et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 2012, 14:1772-1787.
-
(2012)
Environ. Microbiol.
, vol.14
, pp. 1772-1787
-
-
Enning, D.1
Venzlaff, H.2
Garrelfs, J.3
Dinh, H.T.4
Meyer, V.5
Mayrhofer, K.6
-
8
-
-
84869496805
-
Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
-
Venzlaff H., Enning D., Srinivasan J., Mayrhofer K.J.J., Hassel A.W., Widdel F., et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros. Sci. 2013, 66:88-96.
-
(2013)
Corros. Sci.
, vol.66
, pp. 88-96
-
-
Venzlaff, H.1
Enning, D.2
Srinivasan, J.3
Mayrhofer, K.J.J.4
Hassel, A.W.5
Widdel, F.6
-
9
-
-
84893422464
-
Corrosion of iron by sulfate-reducing bacteria: new views of an old problem
-
Enning D., Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl. Environ. Microbiol. 2013, 80:1226-1236.
-
(2013)
Appl. Environ. Microbiol.
, vol.80
, pp. 1226-1236
-
-
Enning, D.1
Garrelfs, J.2
-
10
-
-
34248142314
-
Microbial ecology meets electrochemistry: electricity-driven and driving communities
-
Rabaey K., Rodríguez J., Blackall L.L., Keller J., Gross P., Batstone D., et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 2007, 1:9-18.
-
(2007)
ISME J.
, vol.1
, pp. 9-18
-
-
Rabaey, K.1
Rodríguez, J.2
Blackall, L.L.3
Keller, J.4
Gross, P.5
Batstone, D.6
-
11
-
-
77957147094
-
Microbial electrosynthesis - revisiting the electrical route for microbial production
-
Rabaey K., Rozendal R.A. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8:706-716.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
12
-
-
84898007126
-
Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis
-
Siegert M., Yates M.D., Call D.F., Zhu X., Spormann A., Logan B.E. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustainable Chem. Eng. 2014, 910-917.
-
(2014)
ACS Sustainable Chem. Eng.
, pp. 910-917
-
-
Siegert, M.1
Yates, M.D.2
Call, D.F.3
Zhu, X.4
Spormann, A.5
Logan, B.E.6
-
14
-
-
84872258879
-
Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell
-
Villano M., Scardala S., Aulenta F., Majone M. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 2013, 130:366-371.
-
(2013)
Bioresour. Technol.
, vol.130
, pp. 366-371
-
-
Villano, M.1
Scardala, S.2
Aulenta, F.3
Majone, M.4
-
16
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43:3953-3958.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
17
-
-
0001614970
-
Gram-negative mesophilic sulfate-reducing bacteria
-
Springer Berlin Heidelberg
-
Widdel F., Bak F. Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes 1992, 3352-3357. Springer Berlin Heidelberg.
-
(1992)
The Prokaryotes
, pp. 3352-3357
-
-
Widdel, F.1
Bak, F.2
-
18
-
-
84878415987
-
Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation
-
Beese P., Venzlaff H., Srinivasan J., Garrelfs J., Stratmann M., Mayrhofer K.J.J. Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation. Electrochim. Acta 2013, 105:239-247.
-
(2013)
Electrochim. Acta
, vol.105
, pp. 239-247
-
-
Beese, P.1
Venzlaff, H.2
Srinivasan, J.3
Garrelfs, J.4
Stratmann, M.5
Mayrhofer, K.J.J.6
-
19
-
-
84870016648
-
Electromicrobiology
-
Lovley D.R. Electromicrobiology. Annu. Rev. Microbiol. 2012, 66:391-409.
-
(2012)
Annu. Rev. Microbiol.
, vol.66
, pp. 391-409
-
-
Lovley, D.R.1
-
20
-
-
2642520659
-
Graphite electrodes as electron donors for anaerobic respiration
-
Gregory K.B., Bond D.R., Lovley D.R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 2004, 6:596-604.
-
(2004)
Environ. Microbiol.
, vol.6
, pp. 596-604
-
-
Gregory, K.B.1
Bond, D.R.2
Lovley, D.R.3
-
21
-
-
27744521813
-
Remediation and recovery of uranium from contaminated subsurface environments with electrodes
-
Gregory K.B., Lovley D.R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 2005, 39:8943-8947.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 8943-8947
-
-
Gregory, K.B.1
Lovley, D.R.2
-
22
-
-
44449129578
-
Review: direct and indirect electrical stimulation of microbial metabolism
-
Thrash J.C., Coates J.D. Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 2008, 42:3921-3931.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 3921-3931
-
-
Thrash, J.C.1
Coates, J.D.2
-
23
-
-
51649127655
-
Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi
-
Strycharz S.M., Woodard T.L., Johnson J.P., Nevin K.P., Sanford R.A., Loffler F.E., et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 2008, 74:5943-5947.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 5943-5947
-
-
Strycharz, S.M.1
Woodard, T.L.2
Johnson, J.P.3
Nevin, K.P.4
Sanford, R.A.5
Loffler, F.E.6
-
24
-
-
84866748181
-
Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor
-
Su W., Zhang L., Li D., Zhan G., Qian J., Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol. Bioeng. 2012, 109:2904-2910.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 2904-2910
-
-
Su, W.1
Zhang, L.2
Li, D.3
Zhan, G.4
Qian, J.5
Tao, Y.6
-
25
-
-
78650173757
-
Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
Nevin K.P., Woodard T.L., Franks A.E., Summers Z.M., Lovley D.R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1:e00103-e00110.
-
(2010)
mBio
, vol.1
, pp. e00103-e00110
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
26
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
-
Rosenbaum M., Aulenta F., Villano M., Angenent L.T. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?. Bioresour. Technol. 2011, 102:324-333.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
27
-
-
2142697116
-
Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I
-
Hedderich R. Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr. 2004, 36:65-75.
-
(2004)
J. Bioenerg. Biomembr.
, vol.36
, pp. 65-75
-
-
Hedderich, R.1
-
28
-
-
41349114723
-
Physiology and biochemistry of the methane-producing archaea
-
Springer New York, New York, NY, M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.)
-
Hedderich R., Whitman W.B. Physiology and biochemistry of the methane-producing archaea. The Prokaryotes 2006, 1050-1079. Springer New York, New York, NY. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.).
-
(2006)
The Prokaryotes
, pp. 1050-1079
-
-
Hedderich, R.1
Whitman, W.B.2
-
30
-
-
0006213128
-
2 production from methanol or formaldehyde by the methanogenic bacterium strain Gö1 treated with 2-bromoethanesulfonic acid
-
2 production from methanol or formaldehyde by the methanogenic bacterium strain Gö1 treated with 2-bromoethanesulfonic acid. FEMS Microbiol. Lett. 1989, 65:259-264.
-
(1989)
FEMS Microbiol. Lett.
, vol.65
, pp. 259-264
-
-
Winner, C.1
Gottschalk, G.2
-
31
-
-
71549170875
-
A kinetic perspective on extracellular electron transfer by anode-respiring bacteria
-
Torres C.I., Marcus A.K., Lee H.-S., Parameswaran P., Krajmalnik-Brown R., Rittmann B.E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 2010, 34:3-17.
-
(2010)
FEMS Microbiol. Rev.
, vol.34
, pp. 3-17
-
-
Torres, C.I.1
Marcus, A.K.2
Lee, H.-S.3
Parameswaran, P.4
Krajmalnik-Brown, R.5
Rittmann, B.E.6
-
32
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
Reguera G., McCarthy K.D., Mehta T., Nicoll J.S., Tuominen M.T., Lovley D.R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435:1098-1101.
-
(2005)
Nature
, vol.435
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
33
-
-
84857738658
-
A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms
-
Harnisch F., Freguia S. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chem. Asian. J. 2012, 7:466-475.
-
(2012)
Chem. Asian. J.
, vol.7
, pp. 466-475
-
-
Harnisch, F.1
Freguia, S.2
-
34
-
-
0036176608
-
Protein modified- and membrane electrodes: strategies for the development of biomolecular sensors
-
Bianco P. Protein modified- and membrane electrodes: strategies for the development of biomolecular sensors. Rev. Mol. Biotechnol. 2002, 82:393-409.
-
(2002)
Rev. Mol. Biotechnol.
, vol.82
, pp. 393-409
-
-
Bianco, P.1
-
35
-
-
0026691441
-
Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol
-
Kamlage B., Blaut M. Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol. J. Bacteriol. 1992, 17:3921-3927.
-
(1992)
J. Bacteriol.
, vol.17
, pp. 3921-3927
-
-
Kamlage, B.1
Blaut, M.2
-
37
-
-
68349140297
-
2 reduction on metal electrodes
-
Springer Science+Business Media, LLC, New York, NY, C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds.)
-
2 reduction on metal electrodes. Mod. Asp. Electrochem 2008, 89-189. Springer Science+Business Media, LLC, New York, NY. C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds.).
-
(2008)
Mod. Asp. Electrochem
, pp. 89-189
-
-
Hori, Y.1
-
38
-
-
81355151534
-
A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
-
Schouten K.J.P., Kwon Y., van der Ham C.J.M., Qin Z., Koper M.T.M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2:1902-1909.
-
(2011)
Chem. Sci.
, vol.2
, pp. 1902-1909
-
-
Schouten, K.J.P.1
Kwon, Y.2
van der Ham, C.J.M.3
Qin, Z.4
Koper, M.T.M.5
-
39
-
-
84883054802
-
The kinetics of invertin action
-
Michaelis L., Menten M.M.L. The kinetics of invertin action. FEBS Lett. 1913, 587:2712-2720.
-
(1913)
FEBS Lett.
, vol.587
, pp. 2712-2720
-
-
Michaelis, L.1
Menten, M.M.L.2
-
40
-
-
84874628616
-
Microbial electrocatalysis to guide biofuel and biochemical bioprocessing
-
Angenent L.T., Rosenbaum M.A. Microbial electrocatalysis to guide biofuel and biochemical bioprocessing. Biofuels 2013, 4:131-134.
-
(2013)
Biofuels
, vol.4
, pp. 131-134
-
-
Angenent, L.T.1
Rosenbaum, M.A.2
-
41
-
-
77649237445
-
ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens
-
Busalmen J.P., Esteve-Nuñez A., Berná A., Feliu J.M. ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens. Bioelectrochemistry 2010, 78:25-29.
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 25-29
-
-
Busalmen, J.P.1
Esteve-Nuñez, A.2
Berná, A.3
Feliu, J.M.4
-
42
-
-
80052564960
-
Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
-
Morita M., Malvankar N.S., Franks A.E., Summers Z.M., Giloteaux L., Rotaru A.E., et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2011, 2:e00159-11.
-
(2011)
mBio
, vol.2
, pp. e00159-e00211
-
-
Morita, M.1
Malvankar, N.S.2
Franks, A.E.3
Summers, Z.M.4
Giloteaux, L.5
Rotaru, A.E.6
-
43
-
-
84890454863
-
A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
-
Rotaru A.E., Shrestha P.M., Liu F., Shrestha M., Shrestha D., Embree M., et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7:408-415.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 408-415
-
-
Rotaru, A.E.1
Shrestha, P.M.2
Liu, F.3
Shrestha, M.4
Shrestha, D.5
Embree, M.6
|