메뉴 건너뛰기




Volumn 102, Issue , 2015, Pages 50-55

Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon

Author keywords

Biocatalysis; Bioelectrochemistry; Carbon dioxide reduction; Extracellular electron transfer; Methanogenesis; Microbial electrosynthesis

Indexed keywords

ARCHAEA;

EID: 84914182434     PISSN: 15675394     EISSN: 1878562X     Source Type: Journal    
DOI: 10.1016/j.bioelechem.2014.11.004     Document Type: Article
Times cited : (154)

References (43)
  • 1
    • 0000253782 scopus 로고
    • Physiological Ecology of Methanogens
    • Springer US, Boston, MA, J.G. Ferry (Ed.)
    • Zinder S.H. Physiological Ecology of Methanogens. Methanogenesis 1993, 128-206. Springer US, Boston, MA. J.G. Ferry (Ed.).
    • (1993) Methanogenesis , pp. 128-206
    • Zinder, S.H.1
  • 2
    • 44449149379 scopus 로고    scopus 로고
    • Life close to the thermodynamic limit: how methanogenic archaea conserve energy
    • Springer Berlin Heidelberg, Berlin, Heidelberg, G. Schäfer, H.S. Penefsky (Eds.)
    • Deppenmeier U., Müller V. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Bioenergetics 2008, 123-152. Springer Berlin Heidelberg, Berlin, Heidelberg. G. Schäfer, H.S. Penefsky (Eds.).
    • (2008) Bioenergetics , pp. 123-152
    • Deppenmeier, U.1    Müller, V.2
  • 7
    • 84863216374 scopus 로고    scopus 로고
    • Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust
    • Enning D., Venzlaff H., Garrelfs J., Dinh H.T., Meyer V., Mayrhofer K., et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 2012, 14:1772-1787.
    • (2012) Environ. Microbiol. , vol.14 , pp. 1772-1787
    • Enning, D.1    Venzlaff, H.2    Garrelfs, J.3    Dinh, H.T.4    Meyer, V.5    Mayrhofer, K.6
  • 8
    • 84869496805 scopus 로고    scopus 로고
    • Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
    • Venzlaff H., Enning D., Srinivasan J., Mayrhofer K.J.J., Hassel A.W., Widdel F., et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros. Sci. 2013, 66:88-96.
    • (2013) Corros. Sci. , vol.66 , pp. 88-96
    • Venzlaff, H.1    Enning, D.2    Srinivasan, J.3    Mayrhofer, K.J.J.4    Hassel, A.W.5    Widdel, F.6
  • 9
    • 84893422464 scopus 로고    scopus 로고
    • Corrosion of iron by sulfate-reducing bacteria: new views of an old problem
    • Enning D., Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl. Environ. Microbiol. 2013, 80:1226-1236.
    • (2013) Appl. Environ. Microbiol. , vol.80 , pp. 1226-1236
    • Enning, D.1    Garrelfs, J.2
  • 10
    • 34248142314 scopus 로고    scopus 로고
    • Microbial ecology meets electrochemistry: electricity-driven and driving communities
    • Rabaey K., Rodríguez J., Blackall L.L., Keller J., Gross P., Batstone D., et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 2007, 1:9-18.
    • (2007) ISME J. , vol.1 , pp. 9-18
    • Rabaey, K.1    Rodríguez, J.2    Blackall, L.L.3    Keller, J.4    Gross, P.5    Batstone, D.6
  • 11
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis - revisiting the electrical route for microbial production
    • Rabaey K., Rozendal R.A. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8:706-716.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 14
    • 84872258879 scopus 로고    scopus 로고
    • Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell
    • Villano M., Scardala S., Aulenta F., Majone M. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 2013, 130:366-371.
    • (2013) Bioresour. Technol. , vol.130 , pp. 366-371
    • Villano, M.1    Scardala, S.2    Aulenta, F.3    Majone, M.4
  • 16
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43:3953-3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 17
    • 0001614970 scopus 로고
    • Gram-negative mesophilic sulfate-reducing bacteria
    • Springer Berlin Heidelberg
    • Widdel F., Bak F. Gram-negative mesophilic sulfate-reducing bacteria. The Prokaryotes 1992, 3352-3357. Springer Berlin Heidelberg.
    • (1992) The Prokaryotes , pp. 3352-3357
    • Widdel, F.1    Bak, F.2
  • 19
  • 20
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory K.B., Bond D.R., Lovley D.R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 2004, 6:596-604.
    • (2004) Environ. Microbiol. , vol.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 21
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • Gregory K.B., Lovley D.R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 2005, 39:8943-8947.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 22
    • 44449129578 scopus 로고    scopus 로고
    • Review: direct and indirect electrical stimulation of microbial metabolism
    • Thrash J.C., Coates J.D. Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 2008, 42:3921-3931.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 3921-3931
    • Thrash, J.C.1    Coates, J.D.2
  • 23
    • 51649127655 scopus 로고    scopus 로고
    • Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi
    • Strycharz S.M., Woodard T.L., Johnson J.P., Nevin K.P., Sanford R.A., Loffler F.E., et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 2008, 74:5943-5947.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 5943-5947
    • Strycharz, S.M.1    Woodard, T.L.2    Johnson, J.P.3    Nevin, K.P.4    Sanford, R.A.5    Loffler, F.E.6
  • 24
    • 84866748181 scopus 로고    scopus 로고
    • Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor
    • Su W., Zhang L., Li D., Zhan G., Qian J., Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol. Bioeng. 2012, 109:2904-2910.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2904-2910
    • Su, W.1    Zhang, L.2    Li, D.3    Zhan, G.4    Qian, J.5    Tao, Y.6
  • 25
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin K.P., Woodard T.L., Franks A.E., Summers Z.M., Lovley D.R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1:e00103-e00110.
    • (2010) mBio , vol.1 , pp. e00103-e00110
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 26
    • 77957359097 scopus 로고    scopus 로고
    • Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
    • Rosenbaum M., Aulenta F., Villano M., Angenent L.T. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?. Bioresour. Technol. 2011, 102:324-333.
    • (2011) Bioresour. Technol. , vol.102 , pp. 324-333
    • Rosenbaum, M.1    Aulenta, F.2    Villano, M.3    Angenent, L.T.4
  • 27
    • 2142697116 scopus 로고    scopus 로고
    • Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I
    • Hedderich R. Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr. 2004, 36:65-75.
    • (2004) J. Bioenerg. Biomembr. , vol.36 , pp. 65-75
    • Hedderich, R.1
  • 28
    • 41349114723 scopus 로고    scopus 로고
    • Physiology and biochemistry of the methane-producing archaea
    • Springer New York, New York, NY, M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.)
    • Hedderich R., Whitman W.B. Physiology and biochemistry of the methane-producing archaea. The Prokaryotes 2006, 1050-1079. Springer New York, New York, NY. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.).
    • (2006) The Prokaryotes , pp. 1050-1079
    • Hedderich, R.1    Whitman, W.B.2
  • 30
    • 0006213128 scopus 로고
    • 2 production from methanol or formaldehyde by the methanogenic bacterium strain Gö1 treated with 2-bromoethanesulfonic acid
    • 2 production from methanol or formaldehyde by the methanogenic bacterium strain Gö1 treated with 2-bromoethanesulfonic acid. FEMS Microbiol. Lett. 1989, 65:259-264.
    • (1989) FEMS Microbiol. Lett. , vol.65 , pp. 259-264
    • Winner, C.1    Gottschalk, G.2
  • 33
    • 84857738658 scopus 로고    scopus 로고
    • A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms
    • Harnisch F., Freguia S. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chem. Asian. J. 2012, 7:466-475.
    • (2012) Chem. Asian. J. , vol.7 , pp. 466-475
    • Harnisch, F.1    Freguia, S.2
  • 34
    • 0036176608 scopus 로고    scopus 로고
    • Protein modified- and membrane electrodes: strategies for the development of biomolecular sensors
    • Bianco P. Protein modified- and membrane electrodes: strategies for the development of biomolecular sensors. Rev. Mol. Biotechnol. 2002, 82:393-409.
    • (2002) Rev. Mol. Biotechnol. , vol.82 , pp. 393-409
    • Bianco, P.1
  • 35
    • 0026691441 scopus 로고
    • Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol
    • Kamlage B., Blaut M. Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol. J. Bacteriol. 1992, 17:3921-3927.
    • (1992) J. Bacteriol. , vol.17 , pp. 3921-3927
    • Kamlage, B.1    Blaut, M.2
  • 37
    • 68349140297 scopus 로고    scopus 로고
    • 2 reduction on metal electrodes
    • Springer Science+Business Media, LLC, New York, NY, C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds.)
    • 2 reduction on metal electrodes. Mod. Asp. Electrochem 2008, 89-189. Springer Science+Business Media, LLC, New York, NY. C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds.).
    • (2008) Mod. Asp. Electrochem , pp. 89-189
    • Hori, Y.1
  • 38
    • 81355151534 scopus 로고    scopus 로고
    • A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
    • Schouten K.J.P., Kwon Y., van der Ham C.J.M., Qin Z., Koper M.T.M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2:1902-1909.
    • (2011) Chem. Sci. , vol.2 , pp. 1902-1909
    • Schouten, K.J.P.1    Kwon, Y.2    van der Ham, C.J.M.3    Qin, Z.4    Koper, M.T.M.5
  • 39
    • 84883054802 scopus 로고
    • The kinetics of invertin action
    • Michaelis L., Menten M.M.L. The kinetics of invertin action. FEBS Lett. 1913, 587:2712-2720.
    • (1913) FEBS Lett. , vol.587 , pp. 2712-2720
    • Michaelis, L.1    Menten, M.M.L.2
  • 40
    • 84874628616 scopus 로고    scopus 로고
    • Microbial electrocatalysis to guide biofuel and biochemical bioprocessing
    • Angenent L.T., Rosenbaum M.A. Microbial electrocatalysis to guide biofuel and biochemical bioprocessing. Biofuels 2013, 4:131-134.
    • (2013) Biofuels , vol.4 , pp. 131-134
    • Angenent, L.T.1    Rosenbaum, M.A.2
  • 41
    • 77649237445 scopus 로고    scopus 로고
    • ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens
    • Busalmen J.P., Esteve-Nuñez A., Berná A., Feliu J.M. ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens. Bioelectrochemistry 2010, 78:25-29.
    • (2010) Bioelectrochemistry , vol.78 , pp. 25-29
    • Busalmen, J.P.1    Esteve-Nuñez, A.2    Berná, A.3    Feliu, J.M.4
  • 42
    • 80052564960 scopus 로고    scopus 로고
    • Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
    • Morita M., Malvankar N.S., Franks A.E., Summers Z.M., Giloteaux L., Rotaru A.E., et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2011, 2:e00159-11.
    • (2011) mBio , vol.2 , pp. e00159-e00211
    • Morita, M.1    Malvankar, N.S.2    Franks, A.E.3    Summers, Z.M.4    Giloteaux, L.5    Rotaru, A.E.6
  • 43
    • 84890454863 scopus 로고    scopus 로고
    • A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
    • Rotaru A.E., Shrestha P.M., Liu F., Shrestha M., Shrestha D., Embree M., et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7:408-415.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 408-415
    • Rotaru, A.E.1    Shrestha, P.M.2    Liu, F.3    Shrestha, M.4    Shrestha, D.5    Embree, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.