-
1
-
-
78349297565
-
Oxidative stress and diabetic complications
-
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058-1070.
-
(2010)
Circ Res.
, vol.107
, pp. 1058-1070
-
-
Giacco, F.1
Brownlee, M.2
-
2
-
-
33646525680
-
Vascular NADPH oxidases as drug targets for novel antioxidant strategies
-
Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discovery Today. 2006;11:524-533.
-
(2006)
Drug Discovery Today.
, vol.11
, pp. 524-533
-
-
Guzik, T.J.1
Harrison, D.G.2
-
3
-
-
33749515825
-
Nitroso-redox interactions in the cardiovascular system
-
Zimmet JM, Hare JM. Nitroso-redox interactions in the cardiovascular system. Circulation. 2006;114:1531-1544.
-
(2006)
Circulation.
, vol.114
, pp. 1531-1544
-
-
Zimmet, J.M.1
Hare, J.M.2
-
5
-
-
77958561806
-
The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants
-
Majkova Z, Toborek M, Hennig B. The role of caveolae in endothelial cell dysfunction with a focus on nutrition and environmental toxicants. J Cell Mol Med. 2010;14:2359-2370.
-
(2010)
J Cell Mol Med.
, vol.14
, pp. 2359-2370
-
-
Majkova, Z.1
Toborek, M.2
Hennig, B.3
-
6
-
-
78649357316
-
Is oxidative stress a therapeutic target in cardiovascular disease?
-
Munzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J. 2010;31:2741-2748.
-
(2010)
Eur Heart J.
, vol.31
, pp. 2741-2748
-
-
Munzel, T.1
Gori, T.2
Bruno, R.M.3
Taddei, S.4
-
7
-
-
84904647441
-
Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction
-
Galougahi KK, Liu CC, Gentile C, Kok C, Nunez A, Garcia A, Fry NA, Davies MJ, Hawkins CL, Rasmussen HH, Figtree GA. Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction. J Am Heart Assoc. 2014;3:e000731 doi: 10.1161/JAHA.113.000731.
-
(2014)
J Am Heart Assoc.
, vol.3
-
-
Galougahi, K.K.1
Liu, C.C.2
Gentile, C.3
Kok, C.4
Nunez, A.5
Garcia, A.6
Fry, N.A.7
Davies, M.J.8
Hawkins, C.L.9
Rasmussen, H.H.10
Figtree, G.A.11
-
8
-
-
4344591381
-
Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization
-
Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand JL. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation. 2004;110:948-954.
-
(2004)
Circulation.
, vol.110
, pp. 948-954
-
-
Dessy, C.1
Moniotte, S.2
Ghisdal, P.3
Havaux, X.4
Noirhomme, P.5
Balligand, J.L.6
-
9
-
-
84862001880
-
Interaction with caveolin-1 modulates G protein coupling of mouse beta3-adrenoceptor
-
Sato M, Hutchinson DS, Halls ML, Furness SG, Bengtsson T, Evans BA, Summers RJ. Interaction with caveolin-1 modulates G protein coupling of mouse beta3-adrenoceptor. J Biol Chem. 2012;287:20674-20688.
-
(2012)
J Biol Chem.
, vol.287
, pp. 20674-20688
-
-
Sato, M.1
Hutchinson, D.S.2
Halls, M.L.3
Furness, S.G.4
Bengtsson, T.5
Evans, B.A.6
Summers, R.J.7
-
10
-
-
78650703662
-
b3 adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification
-
Bundgaard H, Liu C-C, Garcia A, Hamilton EJ, Huang Y, Chia KKM, Hunyor SN, Figtree GA, Rasmussen HH. b3 adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation. 2010;122:2699-2708.
-
(2010)
Circulation.
, vol.122
, pp. 2699-2708
-
-
Bundgaard, H.1
Liu, C-C.2
Garcia, A.3
Hamilton, E.J.4
Huang, Y.5
Chia, K.K.M.6
Hunyor, S.N.7
Figtree, G.A.8
Rasmussen, H.H.9
-
12
-
-
52249104702
-
Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase
-
Cai T, Wang H, Chen Y, Liu L, Gunning WT, Quintas LE, Xie ZJ. Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. J Cell Biol. 2008;182:1153-1169.
-
(2008)
J Cell Biol.
, vol.182
, pp. 1153-1169
-
-
Cai, T.1
Wang, H.2
Chen, Y.3
Liu, L.4
Gunning, W.T.5
Quintas, L.E.6
Xie, Z.J.7
-
13
-
-
34548163922
-
Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
-
Gallogly MM, Mieyal JJ. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol. 2007;7:381-391.
-
(2007)
Curr Opin Pharmacol.
, vol.7
, pp. 381-391
-
-
Gallogly, M.M.1
Mieyal, J.J.2
-
14
-
-
78650810596
-
S-glutathionylation uncouples eNOS and regulates its cellular and vascular function
-
Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010;468:1115-1118.
-
(2010)
Nature.
, vol.468
, pp. 1115-1118
-
-
Chen, C.A.1
Wang, T.Y.2
Varadharaj, S.3
Reyes, L.A.4
Hemann, C.5
Talukder, M.A.6
Chen, Y.R.7
Druhan, L.J.8
Zweier, J.L.9
-
15
-
-
84872094899
-
Integrated redox sensor and effector functions for tetrahydrobiopterin-and glutathionylationdependent endothelial nitric-oxide synthase uncoupling
-
Crabtree MJ, Brixey R, Batchelor H, Hale AB, Channon KM. Integrated redox sensor and effector functions for tetrahydrobiopterin-and glutathionylationdependent endothelial nitric-oxide synthase uncoupling. J Biol Chem. 2013;288:561-569.
-
(2013)
J Biol Chem.
, vol.288
, pp. 561-569
-
-
Crabtree, M.J.1
Brixey, R.2
Batchelor, H.3
Hale, A.B.4
Channon, K.M.5
-
16
-
-
84882336972
-
Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I
-
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34:2436-2443.
-
(2013)
Eur Heart J.
, vol.34
, pp. 2436-2443
-
-
Paneni, F.1
Beckman, J.A.2
Creager, M.A.3
Cosentino, F.4
-
17
-
-
33646178955
-
Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms
-
Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888-1904.
-
(2006)
Circulation.
, vol.113
, pp. 1888-1904
-
-
Kim, J.A.1
Montagnani, M.2
Koh, K.K.3
Quon, M.J.4
-
18
-
-
52949099133
-
A novel high-affinity peptide antagonist to the insulin receptor
-
Schaffer L, Brand CL, Hansen BF, Ribel U, Shaw AC, Slaaby R, Sturis J. A novel high-affinity peptide antagonist to the insulin receptor. Biochem Biophys Res Commun. 2008;376:380-383.
-
(2008)
Biochem Biophys Res Commun.
, vol.376
, pp. 380-383
-
-
Schaffer, L.1
Brand, C.L.2
Hansen, B.F.3
Ribel, U.4
Shaw, A.C.5
Slaaby, R.6
Sturis, J.7
-
19
-
-
62449131309
-
Rabbit, a relevant model for the study of cardiac b3-adrenoceptors
-
Audigane L, Kerfant B-G, El Harchi A, Lorenzen-Schmidt I, Toumaniantz G, Cantereau A, Potreau D, Charpentier F, Noireaud J, Gauthier C. Rabbit, a relevant model for the study of cardiac b3-adrenoceptors. Exp Physiol. 2009;94:400-411.
-
(2009)
Exp Physiol.
, vol.94
, pp. 400-411
-
-
Audigane, L.1
Kerfant, B-G.2
El Harchi, A.3
Lorenzen-Schmidt, I.4
Toumaniantz, G.5
Cantereau, A.6
Potreau, D.7
Charpentier, F.8
Noireaud, J.9
Gauthier, C.10
-
20
-
-
0034726725
-
Spin trapping of vascular nitric oxide using colloid Fe(II)-diethyldithiocarbamate
-
Kleschyov AL, Mollnau H, Oelze M, Meinertz T, Huang Y, Harrison DG, Munzel T. Spin trapping of vascular nitric oxide using colloid Fe(II)-diethyldithiocarbamate. Biochem Biophys Res Commun. 2000;275:672-677.
-
(2000)
Biochem Biophys Res Commun.
, vol.275
, pp. 672-677
-
-
Kleschyov, A.L.1
Mollnau, H.2
Oelze, M.3
Meinertz, T.4
Huang, Y.5
Harrison, D.G.6
Munzel, T.7
-
21
-
-
38149142769
-
Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine
-
Zielonka J, Vasquez-Vivar J, Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat Protoc. 2008;3:8-21.
-
(2008)
Nat Protoc.
, vol.3
, pp. 8-21
-
-
Zielonka, J.1
Vasquez-Vivar, J.2
Kalyanaraman, B.3
-
22
-
-
0018183713
-
Potassium-induced relaxation as an indicator of Na+-K+ ATPase activity in vascular smooth muscle
-
Webb RC, Bohr DF. Potassium-induced relaxation as an indicator of Na+-K+ ATPase activity in vascular smooth muscle. Blood Vessels. 1978;15:198-207.
-
(1978)
Blood Vessels.
, vol.15
, pp. 198-207
-
-
Webb, R.C.1
Bohr, D.F.2
-
23
-
-
84884527564
-
Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent b1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction
-
Liu C-C, Karimi Galougahi K, Weisbrod RM, Hansen T, Ravaie R, Nunez A, Liu YB, Fry N, Garcia A, Hamilton EJ, Sweadner KJ, Cohen RA, Figtree GA. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent b1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction. Free Radic Biol Med. 2013;65:563-572.
-
(2013)
Free Radic Biol Med.
, vol.65
, pp. 563-572
-
-
Liu, C-C.1
Karimi Galougahi, K.2
Weisbrod, R.M.3
Hansen, T.4
Ravaie, R.5
Nunez, A.6
Liu, Y.B.7
Fry, N.8
Garcia, A.9
Hamilton, E.J.10
Sweadner, K.J.11
Cohen, R.A.12
Figtree, G.A.13
-
24
-
-
68049096878
-
Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation
-
Figtree GA, Liu CC, Bibert S, Hamilton EJ, Garcia A, White CN, Chia KKM, Cornelius F, Geering K, Rasmussen HH. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Circ Res. 2009;105:185-193.
-
(2009)
Circ Res.
, vol.105
, pp. 185-193
-
-
Figtree, G.A.1
Liu, C.C.2
Bibert, S.3
Hamilton, E.J.4
Garcia, A.5
White, C.N.6
Chia, K.K.M.7
Cornelius, F.8
Geering, K.9
Rasmussen, H.H.10
-
25
-
-
84940747132
-
beta3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade
-
Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH. beta3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol. 2015;309:C286-C295.
-
(2015)
Am J Physiol Cell Physiol.
, vol.309
, pp. C286-C295
-
-
Karimi Galougahi, K.1
Liu, C.C.2
Garcia, A.3
Fry, N.A.4
Hamilton, E.J.5
Figtree, G.A.6
Rasmussen, H.H.7
-
26
-
-
64549106959
-
Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation
-
Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal. 2009;11:1059-1081.
-
(2009)
Antioxid Redox Signal.
, vol.11
, pp. 1059-1081
-
-
Gallogly, M.M.1
Starke, D.W.2
Mieyal, J.J.3
-
27
-
-
84861487927
-
Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase
-
Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Paolocci N, Kass DA, Barouch LA. Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol. 2012;59:1979-1987.
-
(2012)
J Am Coll Cardiol.
, vol.59
, pp. 1979-1987
-
-
Niu, X.1
Watts, V.L.2
Cingolani, O.H.3
Sivakumaran, V.4
Leyton-Mange, J.S.5
Ellis, C.L.6
Miller, K.L.7
Vandegaer, K.8
Bedja, D.9
Gabrielson, K.L.10
Paolocci, N.11
Kass, D.A.12
Barouch, L.A.13
-
28
-
-
84878696585
-
Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation
-
Watts VL, Sepulveda FM, Cingolani OH, Ho AS, Niu X, Kim R, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Rameau G, O'Rourke B, Kass DA, Barouch LA. Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. J Mol Cell Cardiol. 2013;62:8-17.
-
(2013)
J Mol Cell Cardiol.
, vol.62
, pp. 8-17
-
-
Watts, V.L.1
Sepulveda, F.M.2
Cingolani, O.H.3
Ho, A.S.4
Niu, X.5
Kim, R.6
Miller, K.L.7
Vandegaer, K.8
Bedja, D.9
Gabrielson, K.L.10
Rameau, G.11
O'Rourke, B.12
Kass, D.A.13
Barouch, L.A.14
-
30
-
-
70450211783
-
Rodent models of diabetic cardiomyopathy
-
Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech. 2009;2:454-466.
-
(2009)
Dis Model Mech.
, vol.2
, pp. 454-466
-
-
Bugger, H.1
Abel, E.D.2
-
31
-
-
0035691617
-
The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas
-
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537-546.
-
(2001)
Physiol Res.
, vol.50
, pp. 537-546
-
-
Szkudelski, T.1
-
32
-
-
0035920192
-
Alloxan-induced mitochondrial permeability transition triggered by calcium, thiol oxidation, and matrix ATP
-
Sakurai K, Katoh M, Fujimoto Y. Alloxan-induced mitochondrial permeability transition triggered by calcium, thiol oxidation, and matrix ATP. J Biol Chem. 2001;276:26942-26946.
-
(2001)
J Biol Chem.
, vol.276
, pp. 26942-26946
-
-
Sakurai, K.1
Katoh, M.2
Fujimoto, Y.3
-
34
-
-
62349116866
-
Vascular NAD(P)H oxidase activation in diabetes: a doubleedged sword in redox signalling
-
Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a doubleedged sword in redox signalling. Cardiovasc Res. 2009;82:9-20.
-
(2009)
Cardiovasc Res.
, vol.82
, pp. 9-20
-
-
Gao, L.1
Mann, G.E.2
-
35
-
-
0037046214
-
Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase
-
Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation. 2002;105:1656-1662.
-
(2002)
Circulation.
, vol.105
, pp. 1656-1662
-
-
Guzik, T.J.1
Mussa, S.2
Gastaldi, D.3
Sadowski, J.4
Ratnatunga, C.5
Pillai, R.6
Channon, K.M.7
-
36
-
-
84929136415
-
Oxidase interactions in cardiovascular disease
-
In: Ismail LAHER, ed. Berlin, Heidelberg: Springer
-
Youn JY, Siu KL, Li Q, Harrison DG, Cai H. Oxidase interactions in cardiovascular disease. In: Ismail LAHER, ed. Systems Biology of Free Radicals and Antioxidants. Berlin, Heidelberg: Springer; 2014:849-876.
-
(2014)
Systems Biology of Free Radicals and Antioxidants
, pp. 849-876
-
-
Youn, J.Y.1
Siu, K.L.2
Li, Q.3
Harrison, D.G.4
Cai, H.5
-
37
-
-
0029043644
-
In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide
-
Mayer B, Werner ER. In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995;351:453-463.
-
(1995)
Naunyn Schmiedebergs Arch Pharmacol.
, vol.351
, pp. 453-463
-
-
Mayer, B.1
Werner, E.R.2
-
38
-
-
84938725202
-
Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition
-
Chia KK, Liu CC, Hamilton EJ, Garcia A, Fry NA, Hannam W, Figtree GA, Rasmussen HH. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition. Am J Physiol Cell Physiol. 2015;309:C239-C250.
-
(2015)
Am J Physiol Cell Physiol.
, vol.309
, pp. C239-C250
-
-
Chia, K.K.1
Liu, C.C.2
Hamilton, E.J.3
Garcia, A.4
Fry, N.A.5
Hannam, W.6
Figtree, G.A.7
Rasmussen, H.H.8
-
39
-
-
39349096310
-
Opposing effects of coupled and uncoupled NOS activity on the Na+-K+ pump in cardiac myocytes
-
White CN, Hamilton EJ, Garcia A, Wang D, Chia KKM, Figtree GA, Rasmussen HH. Opposing effects of coupled and uncoupled NOS activity on the Na+-K+ pump in cardiac myocytes. Am J Physiol Cell Physiol. 2008;294:C572-C578.
-
(2008)
Am J Physiol Cell Physiol.
, vol.294
, pp. C572-C578
-
-
White, C.N.1
Hamilton, E.J.2
Garcia, A.3
Wang, D.4
Chia, K.K.M.5
Figtree, G.A.6
Rasmussen, H.H.7
-
41
-
-
84884860926
-
Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification
-
Chen CA, De Pascali F, Basye A, Hemann C, Zweier JL. Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification. Biochemistry. 2013;52:6712-6723.
-
(2013)
Biochemistry.
, vol.52
, pp. 6712-6723
-
-
Chen, C.A.1
De Pascali, F.2
Basye, A.3
Hemann, C.4
Zweier, J.L.5
-
42
-
-
80052968360
-
Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and Sglutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan
-
Knorr M, Hausding M, Kroller-Schuhmacher S, Steven S, Oelze M, Heeren T, Scholz A, Gori T, Wenzel P, Schulz E, Daiber A, Munzel T. Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and Sglutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan. Arterioscler Thromb Vasc Biol. 2011;31:2223-2231.
-
(2011)
Arterioscler Thromb Vasc Biol.
, vol.31
, pp. 2223-2231
-
-
Knorr, M.1
Hausding, M.2
Kroller-Schuhmacher, S.3
Steven, S.4
Oelze, M.5
Heeren, T.6
Scholz, A.7
Gori, T.8
Wenzel, P.9
Schulz, E.10
Daiber, A.11
Munzel, T.12
-
43
-
-
34250727615
-
Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells
-
Selemidis S, Dusting GJ, Peshavariya H, Kemp-Harper BK, Drummond GR. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc Res. 2007;75:349-358.
-
(2007)
Cardiovasc Res.
, vol.75
, pp. 349-358
-
-
Selemidis, S.1
Dusting, G.J.2
Peshavariya, H.3
Kemp-Harper, B.K.4
Drummond, G.R.5
-
44
-
-
0036196174
-
The activity of leukocyte NADPH oxidase: regulation by p47PHOX cysteine and serine residues
-
Babior BM. The activity of leukocyte NADPH oxidase: regulation by p47PHOX cysteine and serine residues. Antioxid Redox Signal. 2002;4:35-38.
-
(2002)
Antioxid Redox Signal.
, vol.4
, pp. 35-38
-
-
Babior, B.M.1
-
45
-
-
84865730227
-
Nebivolol-induced vasodilation of renal afferent arterioles involves beta3-adrenergic receptor and nitric oxide synthase activation
-
Feng MG, Prieto MC, Navar LG. Nebivolol-induced vasodilation of renal afferent arterioles involves beta3-adrenergic receptor and nitric oxide synthase activation. Am J Physiol Renal Physiol. 2012;303:F775-F782.
-
(2012)
Am J Physiol Renal Physiol.
, vol.303
, pp. F775-F782
-
-
Feng, M.G.1
Prieto, M.C.2
Navar, L.G.3
-
46
-
-
77953185520
-
The selectivity of beta-adrenoceptor agonists at human beta1-, beta2-and beta3-adrenoceptors
-
Baker JG. The selectivity of beta-adrenoceptor agonists at human beta1-, beta2-and beta3-adrenoceptors. Br J Pharmacol. 2010;160:1048-1061.
-
(2010)
Br J Pharmacol.
, vol.160
, pp. 1048-1061
-
-
Baker, J.G.1
-
47
-
-
14644421602
-
The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors
-
Baker JG. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol. 2005;144: 317-322.
-
(2005)
Br J Pharmacol.
, vol.144
, pp. 317-322
-
-
Baker, J.G.1
-
48
-
-
35548946776
-
Ligand-directed signaling at the beta3-adrenoceptor produced by 3-(2-ethylphenoxy)-1-[(1, S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate (SR59230A) relative to receptor agonists
-
Sato M, Horinouchi T, Hutchinson DS, Evans BA, Summers RJ. Ligand-directed signaling at the beta3-adrenoceptor produced by 3-(2-ethylphenoxy)-1-[(1, S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol. 2007;72:1359-1368.
-
(2007)
Mol Pharmacol.
, vol.72
, pp. 1359-1368
-
-
Sato, M.1
Horinouchi, T.2
Hutchinson, D.S.3
Evans, B.A.4
Summers, R.J.5
-
49
-
-
80053425581
-
Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy
-
Schuhmacher S, Oelze M, Bollmann F, Kleinert H, Otto C, Heeren T, Steven S, Hausding M, Knorr M, Pautz A, Reifenberg K, Schulz E, Gori T, Wenzel P, Munzel T, Daiber A. Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy. Diabetes. 2011;60:2608-2616.
-
(2011)
Diabetes.
, vol.60
, pp. 2608-2616
-
-
Schuhmacher, S.1
Oelze, M.2
Bollmann, F.3
Kleinert, H.4
Otto, C.5
Heeren, T.6
Steven, S.7
Hausding, M.8
Knorr, M.9
Pautz, A.10
Reifenberg, K.11
Schulz, E.12
Gori, T.13
Wenzel, P.14
Munzel, T.15
Daiber, A.16
-
50
-
-
0034858180
-
Beta 3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans
-
de Souza CJ, Burkey BF. Beta 3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curr Pharm Des. 2001;7:1433-1449.
-
(2001)
Curr Pharm Des.
, vol.7
, pp. 1433-1449
-
-
de Souza, C.J.1
Burkey, B.F.2
-
51
-
-
79960044076
-
Challenges in beta(3)-adrenoceptor agonist drug development
-
Arch JR. Challenges in beta(3)-adrenoceptor agonist drug development. Ther Adv Endocrinol Metab. 2011;2:59-64.
-
(2011)
Ther Adv Endocrinol Metab.
, vol.2
, pp. 59-64
-
-
Arch, J.R.1
-
53
-
-
84861505171
-
Alterations in beta3-adrenergic cardiac innervation and nitric oxide signaling in heart failure
-
Kulandavelu S, Hare JM. Alterations in beta3-adrenergic cardiac innervation and nitric oxide signaling in heart failure. J Am Coll Cardiol. 2012;59:1988-1990.
-
(2012)
J Am Coll Cardiol.
, vol.59
, pp. 1988-1990
-
-
Kulandavelu, S.1
Hare, J.M.2
-
54
-
-
84939532776
-
Treatment with a beta3 adrenergic receptor agonist in heart failure reverses an oxidative modification and inhibition of the Na+-K+ pump in cardiac myocytes and improves pulmonary congestion
-
Fry NA, Garcia A, Karimi Galougahi K, Liu CC, Hamilton EJ, McLachlan CS, Figtree GA. Treatment with a beta3 adrenergic receptor agonist in heart failure reverses an oxidative modification and inhibition of the Na+-K+ pump in cardiac myocytes and improves pulmonary congestion. Circulation. 2013;128: A17142.
-
(2013)
Circulation.
, vol.128
-
-
Fry, N.A.1
Garcia, A.2
Karimi Galougahi, K.3
Liu, C.C.4
Hamilton, E.J.5
McLachlan, C.S.6
Figtree, G.A.7
-
55
-
-
85002740046
-
Beta 3 agonist treatment in heart failure (Beat-HF)
-
Accessed August 22
-
National Library of Medicine (US). Beta 3 agonist treatment in heart failure (Beat-HF) (Online). Available at: http://clinicaltrials.gov/show/NCT01876433. Accessed August 22, 2015.
-
(2015)
-
-
|