메뉴 건너뛰기




Volumn 8, Issue 12, 2016, Pages

Applicability of a nu-support vector regression model for the completion of missing data in hydrological time series

Author keywords

Data driven model; Precipitation; Runoff; Sensor network; Snowmelt; SVR

Indexed keywords

CATCHMENTS; FLOODS; PRECIPITATION (CHEMICAL); RAIN; REGRESSION ANALYSIS; RUNOFF; SENSOR NETWORKS; SNOW; SNOW MELTING SYSTEMS; TIME SERIES; WATER LEVELS;

EID: 85002907353     PISSN: None     EISSN: 20734441     Source Type: Journal    
DOI: 10.3390/w8120560     Document Type: Article
Times cited : (25)

References (57)
  • 1
    • 33748488864 scopus 로고    scopus 로고
    • Environmental Sensor Networks: A revolution in the earth system science?
    • Hart, J.K.; Martinez, K. Environmental Sensor Networks: A revolution in the earth system science? Earth-Sci. Rev. 2006, 78, 177-191.
    • (2006) Earth-Sci. Rev. , vol.78 , pp. 177-191
    • Hart, J.K.1    Martinez, K.2
  • 2
    • 33846644124 scopus 로고    scopus 로고
    • A survey of sensor network applications
    • Xu, N. A survey of sensor network applications. IEEE Commun. Mag. 2002, 40, 102-114.
    • (2002) IEEE Commun. Mag. , vol.40 , pp. 102-114
    • Xu, N.1
  • 4
    • 70350018507 scopus 로고    scopus 로고
    • Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in southern Finland: Evaluation from a data user's perspective
    • Kotamäki, N.; Thessler, S.; Koskiaho, J.; Hannukkala, A.O.; Huitu, H.; Huttula, T.; Havento, J.; Järvenpää, M. Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in southern Finland: Evaluation from a data user's perspective. Sensors 2009, 9, 2862-2883.
    • (2009) Sensors , vol.9 , pp. 2862-2883
    • Kotamäki, N.1    Thessler, S.2    Koskiaho, J.3    Hannukkala, A.O.4    Huitu, H.5    Huttula, T.6    Havento, J.7    Järvenpää, M.8
  • 5
    • 84899425513 scopus 로고    scopus 로고
    • Big data reduction and optimization in sensor monitoring network
    • He, B.; Li, Y. Big data reduction and optimization in sensor monitoring network. J. Appl. Math. 2014, 2014, 294591.
    • (2014) J. Appl. Math. , vol.2014 , pp. 294591
    • He, B.1    Li, Y.2
  • 6
    • 84902660157 scopus 로고    scopus 로고
    • An open source software approach to geospatial sensor network standardization for urban runoff
    • Rettig, A.J.; Khanna, S.; Heintzelman, D.; Beck, R.A. An open source software approach to geospatial sensor network standardization for urban runoff. Comput. Environ. Urban Syst. 2014, 48, 28-34.
    • (2014) Comput. Environ. Urban Syst. , vol.48 , pp. 28-34
    • Rettig, A.J.1    Khanna, S.2    Heintzelman, D.3    Beck, R.A.4
  • 7
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak, P.; Sudheer, K.; Rangan, D.; Ramasastri, K. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291, 52-66.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.1    Sudheer, K.2    Rangan, D.3    Ramasastri, K.4
  • 8
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing streamflow data using principles of chaos theory
    • Elshorbagy, A.; Simonovic, S.P.; Panu, U.S. Estimation of missing streamflow data using principles of chaos theory. J. Hydrol. 2002, 255, 123-133.
    • (2002) J. Hydrol. , vol.255 , pp. 123-133
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 9
    • 25844451634 scopus 로고    scopus 로고
    • Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records
    • Teegavarapu, R.S.V.; Chandramouli, V. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J. Hydrol. 2005, 312, 191-206.
    • (2005) J. Hydrol. , vol.312 , pp. 191-206
    • Teegavarapu, R.S.V.1    Chandramouli, V.2
  • 10
    • 84926511823 scopus 로고    scopus 로고
    • Training of artificial neural networks using information-rich data
    • Singh, S.; Jain, S.; Bárdossy, A. Training of artificial neural networks using information-rich data. Hydrology 2014, 1, 40-62.
    • (2014) Hydrology , vol.1 , pp. 40-62
    • Singh, S.1    Jain, S.2    Bárdossy, A.3
  • 13
    • 84939446484 scopus 로고    scopus 로고
    • RunoffResponse to ClimateWarming and Forest Disturbance in a Mid-Mountain Basin
    • Langhammer, J.; Su, Y.; Bernsteinová, J. RunoffResponse to ClimateWarming and Forest Disturbance in a Mid-Mountain Basin. Water 2015, 7, 3320-3342.
    • (2015) Water , vol.7 , pp. 3320-3342
    • Langhammer, J.1    Su, Y.2    Bernsteinová, J.3
  • 14
    • 22544452840 scopus 로고    scopus 로고
    • The database of soil information system-PUGIS
    • Kozák, J.; Nemecek, J.; Jetmar, M. The database of soil information system-PUGIS. Rostl. Vyroba UZPI 1996, 42, 529-534.
    • (1996) Rostl. Vyroba UZPI , vol.42 , pp. 529-534
    • Kozák, J.1    Nemecek, J.2    Jetmar, M.3
  • 15
  • 17
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoffmodelling
    • Dawson, C.W.;Wilby, R. An artificial neural network approach to rainfall-runoffmodelling. Hydrol. Sci. J. 1998, 43, 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 18
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • Tingsanchali, T.; Gautam, M.R. Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrol. Process. 2000, 14, 2473-2487.
    • (2000) Hydrol. Process. , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 19
    • 85002692720 scopus 로고    scopus 로고
    • Neural network modelling trade-offs: Small might be beautiful but perhaps bigger is better?
    • Abrahart, R.J.; Dawson, C.W. Neural network modelling trade-offs: Small might be beautiful but perhaps bigger is better? Assembly 2009, 11, 4832.
    • (2009) Assembly , vol.11 , pp. 4832
    • Abrahart, R.J.1    Dawson, C.W.2
  • 20
    • 1642265059 scopus 로고    scopus 로고
    • Modelling deforestation using GIS and artificial neural networks
    • Mas, J. Modelling deforestation using GIS and artificial neural networks. Environ. Model. Softw. 2004, 19, 461-471.
    • (2004) Environ. Model. Softw. , vol.19 , pp. 461-471
    • Mas, J.1
  • 21
    • 84900410874 scopus 로고    scopus 로고
    • Bayesian networks for environmental flow decision-making and an application in the Yellow River estuary, China
    • Pang, A.P.; Sun, T. Bayesian networks for environmental flow decision-making and an application in the Yellow River estuary, China. Hydrol. Earth Syst. Sci. 2014, 18, 1641-1651.
    • (2014) Hydrol. Earth Syst. Sci. , vol.18 , pp. 1641-1651
    • Pang, A.P.1    Sun, T.2
  • 22
    • 80054678981 scopus 로고    scopus 로고
    • Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting
    • Zhang, X.; Liang, F.; Yu, B.; Zong, Z. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting. J. Hydrol. 2011, 409, 696-709.
    • (2011) J. Hydrol. , vol.409 , pp. 696-709
    • Zhang, X.1    Liang, F.2    Yu, B.3    Zong, Z.4
  • 23
    • 84979943791 scopus 로고    scopus 로고
    • A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks
    • Xue, J.; Gui, D.; Zhao, Y.; Lei, J.; Zeng, F.; Feng, X.; Mao, D.; Shareef, M. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks. J. Hydrol. 2016, 540, 1209-1222.
    • (2016) J. Hydrol. , vol.540 , pp. 1209-1222
    • Xue, J.1    Gui, D.2    Zhao, Y.3    Lei, J.4    Zeng, F.5    Feng, X.6    Mao, D.7    Shareef, M.8
  • 24
    • 0010864753 scopus 로고
    • Pattern Recognition using Generalized Portrait Method
    • Vapnik, V.N.; Lerner, A. Pattern Recognition using Generalized Portrait Method. Autom. Remote Control 1963, 24, 774-780.
    • (1963) Autom. Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.N.1    Lerner, A.2
  • 25
    • 84994099635 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • Wiley: New York, NY, USA
    • Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 2, p. 736.
    • (1998) , vol.2 , pp. 736
    • Vapnik, V.N.1
  • 26
    • 84863306895 scopus 로고    scopus 로고
    • Forecasting performance of LS-SVM for nonlinear hydrological time series
    • Hwang, S.H.; Ham, D.H.; Kim, J.H. Forecasting performance of LS-SVM for nonlinear hydrological time series. KSCE J. Civ. Eng. 2012, 16, 870-882.
    • (2012) KSCE J. Civ. Eng. , vol.16 , pp. 870-882
    • Hwang, S.H.1    Ham, D.H.2    Kim, J.H.3
  • 27
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim, K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307-319.
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.1
  • 30
    • 4544279852 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
    • MIT Press: Cambridge, MA, USA
    • Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2002.
    • (2002)
    • Scholkopf, B.1    Smola, A.J.2
  • 31
    • 84899447875 scopus 로고    scopus 로고
    • Support vector machine applications in the field of hydrology: A review
    • Raghavendra, S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. J. 2014, 19, 372-386.
    • (2014) Appl. Soft Comput. J. , vol.19 , pp. 372-386
    • Raghavendra, S.1    Deka, P.C.2
  • 32
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J.-Y.; Cheng, C.-T.; Chau, K.-W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , pp. 599-612
    • Lin, J.-Y.1    Cheng, C.-T.2    Chau, K.-W.3
  • 33
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P.S.; Chen, S.T.; Chang, I. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328, 704-716.
    • (2006) J. Hydrol. , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.3
  • 34
    • 84964034032 scopus 로고    scopus 로고
    • Support vector regression for rainfall-runoffmodeling in urban drainage: A comparison with the EPA's storm water management model
    • Granata, F.; Gargano, R.; de Marinis, G. Support vector regression for rainfall-runoffmodeling in urban drainage: A comparison with the EPA's storm water management model. Water 2016, 8, 69.
    • (2016) Water , vol.8 , pp. 69
    • Granata, F.1    Gargano, R.2    de Marinis, G.3
  • 35
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori, R.; Karbassi, A.R.; Moghaddamnia, A.; Han, D.; Zokaei-Ashtiani, M.H.; Farokhnia, A.; Gousheh, M.G. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401, 177-189.
    • (2011) J. Hydrol. , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Gousheh, M.G.7
  • 36
    • 0003798635 scopus 로고    scopus 로고
    • An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
    • Cambridge University Press: Cambridge, UK
    • Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 37
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • Dibike, Y.B.; Velickov, S.; Solomatine, D.; Abbott, M.B. Model induction with support vector machines: Introduction and applications. J. Comput. Civ. Eng. 2001, 15, 208-216.
    • (2001) J. Comput. Civ. Eng. , vol.15 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 38
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines
    • Chang, C.; Lin, C. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2013, 2, 1-39.
    • (2013) ACM Trans. Intell. Syst. Technol. , vol.2 , pp. 1-39
    • Chang, C.1    Lin, C.2
  • 41
    • 0001149082 scopus 로고    scopus 로고
    • Support vector regression with automatic accuracy control
    • Springer: Heidelberg, Germany
    • Schölkopf, B.; Bartlett, P.; Smola, A.; Williamson, R. Support vector regression with automatic accuracy control. In ICANN 98; Springer: Heidelberg, Germany, 1998; pp. 111-116.
    • (1998) ICANN 98 , pp. 111-116
    • Schölkopf, B.1    Bartlett, P.2    Smola, A.3    Williamson, R.4
  • 42
    • 85002562904 scopus 로고    scopus 로고
    • Support Vector Regression for Non-Stationary Time Series
    • Master's Thesis, University ofTennessee, Knoxville, TN, USA
    • Ojemakinde, B.T. Support Vector Regression for Non-Stationary Time Series. Master's Thesis, University ofTennessee, Knoxville, TN, USA, 2006.
    • (2006)
    • Ojemakinde, B.T.1
  • 44
    • 34548045281 scopus 로고    scopus 로고
    • The performance of nu-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy
    • Zhu, D.; Ji, B.; Meng, C.; Shi, B.; Tu, Z.; Qing, Z. The performance of nu-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy. Anal. Chim. Acta 2007, 598, 227-234.
    • (2007) Anal. Chim. Acta , vol.598 , pp. 227-234
    • Zhu, D.1    Ji, B.2    Meng, C.3    Shi, B.4    Tu, Z.5    Qing, Z.6
  • 47
    • 0038895405 scopus 로고    scopus 로고
    • Training nu-support vector regression: Theory and algorithms
    • Chang, C.-C.; Lin, C.-J. Training nu-support vector regression: Theory and algorithms. Neural Comput. 2002, 14, 1959-1977.
    • (2002) Neural Comput. , vol.14 , pp. 1959-1977
    • Chang, C.-C.1    Lin, C.-J.2
  • 48
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoffmodelling
    • Bray, M.; Han, D. Identification of support vector machines for runoffmodelling. J. Hydroinf. 2004, 6, 265-280.
    • (2004) J. Hydroinf. , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 49
    • 24944559785 scopus 로고    scopus 로고
    • Support Vector Machines: Theory and Applications
    • Springer: Heidelberg, Germany
    • Wang, L. Support Vector Machines: Theory and Applications; Springer: Heidelberg, Germany, 2005; Volume 177.
    • (2005) , vol.177
    • Wang, L.1
  • 50
    • 60749114973 scopus 로고    scopus 로고
    • Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data
    • Hais, M.; Jonášová, M.; Langhammer, J.; Kučera, T. Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835-845.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 835-845
    • Hais, M.1    Jonášová, M.2    Langhammer, J.3    Kučera, T.4
  • 51
    • 84924087777 scopus 로고    scopus 로고
    • Restoration of central-european mountain norway spruce forest 15 years after natural and anthropogenic disturbance
    • Nováková, M.H.; Edwards-Jonášová, M. Restoration of central-european mountain norway spruce forest 15 years after natural and anthropogenic disturbance. For. Ecol. Manag. 2015, 344, 120-130.
    • (2015) For. Ecol. Manag. , vol.344 , pp. 120-130
    • Nováková, M.H.1    Edwards-Jonášová, M.2
  • 52
    • 76249109837 scopus 로고    scopus 로고
    • Peat bogs influence on runoffprocess: Case study of the vydra and k?remelná river basins in the šumava mountains, Southwestern Czechia
    • Janskỳ, B.; Kocum, J. Peat bogs influence on runoffprocess: Case study of the vydra and k?remelná river basins in the šumava mountains, Southwestern Czechia. Geografie 2008, 113, 383-399.
    • (2008) Geografie , vol.113 , pp. 383-399
    • Janskỳ, B.1    Kocum, J.2
  • 53
    • 80053998217 scopus 로고    scopus 로고
    • The effects of physical-geographic factors on flood episodes extremity in the Vydra River basin
    • Čurda, J.; Janskỳ, B.; Kocum, J. The effects of physical-geographic factors on flood episodes extremity in the Vydra River basin. Geografie 2011, 116, 335-353.
    • (2011) Geografie , vol.116 , pp. 335-353
    • Čurda, J.1    Janskỳ, B.2    Kocum, J.3
  • 54
    • 84255171706 scopus 로고    scopus 로고
    • Modelling the Impact of Land Cover Changes on Flood Mitigation in the Upper Lužnice Basin
    • Váňová, V.; Langhammer, J. Modelling the Impact of Land Cover Changes on Flood Mitigation in the Upper Lužnice Basin. J. Hydrol. Hydromech. 2011, 59, 262-274.
    • (2011) J. Hydrol. Hydromech. , vol.59 , pp. 262-274
    • Váňová, V.1    Langhammer, J.2
  • 55
    • 36048983502 scopus 로고    scopus 로고
    • Rainfall-runoffmodelling in small and middle-large catchments-An overview
    • Jeníček, M. Rainfall-runoffmodelling in small and middle-large catchments-An overview. Geografie 2006, 111, 305-313.
    • (2006) Geografie , vol.111 , pp. 305-313
    • Jeníček, M.1
  • 56
    • 14644392676 scopus 로고    scopus 로고
    • Kernel Methods for Pattern Analysis
    • Cambridge University Press: Cambridge, UK
    • Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004; Volume 47.
    • (2004) , vol.47
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 57
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens, J.A.K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85-105.
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.