-
1
-
-
33748488864
-
Environmental Sensor Networks: A revolution in the earth system science?
-
Hart, J.K.; Martinez, K. Environmental Sensor Networks: A revolution in the earth system science? Earth-Sci. Rev. 2006, 78, 177-191.
-
(2006)
Earth-Sci. Rev.
, vol.78
, pp. 177-191
-
-
Hart, J.K.1
Martinez, K.2
-
2
-
-
33846644124
-
A survey of sensor network applications
-
Xu, N. A survey of sensor network applications. IEEE Commun. Mag. 2002, 40, 102-114.
-
(2002)
IEEE Commun. Mag.
, vol.40
, pp. 102-114
-
-
Xu, N.1
-
3
-
-
85002566948
-
The impact of disturbance on the dynamics of fluvial processes in mountain landscapes
-
Langhammer, J.; Hartvich, F.; Kliment, Z.; Jeníček, M.; Bernsteinová, J.; Vlček, L.; Su, Y.; Štych, P.; Miřijovskỳ, J. The impact of disturbance on the dynamics of fluvial processes in mountain landscapes. Silva Gabreta 2015, 21, 105-116.
-
(2015)
Silva Gabreta
, vol.21
, pp. 105-116
-
-
Langhammer, J.1
Hartvich, F.2
Kliment, Z.3
Jeníček, M.4
Bernsteinová, J.5
Vlček, L.6
Su, Y.7
Štych, P.8
Miřijovskỳ, J.9
-
4
-
-
70350018507
-
Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in southern Finland: Evaluation from a data user's perspective
-
Kotamäki, N.; Thessler, S.; Koskiaho, J.; Hannukkala, A.O.; Huitu, H.; Huttula, T.; Havento, J.; Järvenpää, M. Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in southern Finland: Evaluation from a data user's perspective. Sensors 2009, 9, 2862-2883.
-
(2009)
Sensors
, vol.9
, pp. 2862-2883
-
-
Kotamäki, N.1
Thessler, S.2
Koskiaho, J.3
Hannukkala, A.O.4
Huitu, H.5
Huttula, T.6
Havento, J.7
Järvenpää, M.8
-
5
-
-
84899425513
-
Big data reduction and optimization in sensor monitoring network
-
He, B.; Li, Y. Big data reduction and optimization in sensor monitoring network. J. Appl. Math. 2014, 2014, 294591.
-
(2014)
J. Appl. Math.
, vol.2014
, pp. 294591
-
-
He, B.1
Li, Y.2
-
6
-
-
84902660157
-
An open source software approach to geospatial sensor network standardization for urban runoff
-
Rettig, A.J.; Khanna, S.; Heintzelman, D.; Beck, R.A. An open source software approach to geospatial sensor network standardization for urban runoff. Comput. Environ. Urban Syst. 2014, 48, 28-34.
-
(2014)
Comput. Environ. Urban Syst.
, vol.48
, pp. 28-34
-
-
Rettig, A.J.1
Khanna, S.2
Heintzelman, D.3
Beck, R.A.4
-
7
-
-
1942490118
-
A neuro-fuzzy computing technique for modeling hydrological time series
-
Nayak, P.; Sudheer, K.; Rangan, D.; Ramasastri, K. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291, 52-66.
-
(2004)
J. Hydrol.
, vol.291
, pp. 52-66
-
-
Nayak, P.1
Sudheer, K.2
Rangan, D.3
Ramasastri, K.4
-
8
-
-
0037005708
-
Estimation of missing streamflow data using principles of chaos theory
-
Elshorbagy, A.; Simonovic, S.P.; Panu, U.S. Estimation of missing streamflow data using principles of chaos theory. J. Hydrol. 2002, 255, 123-133.
-
(2002)
J. Hydrol.
, vol.255
, pp. 123-133
-
-
Elshorbagy, A.1
Simonovic, S.P.2
Panu, U.S.3
-
9
-
-
25844451634
-
Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records
-
Teegavarapu, R.S.V.; Chandramouli, V. Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J. Hydrol. 2005, 312, 191-206.
-
(2005)
J. Hydrol.
, vol.312
, pp. 191-206
-
-
Teegavarapu, R.S.V.1
Chandramouli, V.2
-
10
-
-
84926511823
-
Training of artificial neural networks using information-rich data
-
Singh, S.; Jain, S.; Bárdossy, A. Training of artificial neural networks using information-rich data. Hydrology 2014, 1, 40-62.
-
(2014)
Hydrology
, vol.1
, pp. 40-62
-
-
Singh, S.1
Jain, S.2
Bárdossy, A.3
-
11
-
-
77954144514
-
Application of ANN and ANFIS models for reconstructing missing flow data
-
Dastorani, M.T.; Moghadamnia, A.; Piri, J.; Rico-Ramirez, M. Application of ANN and ANFIS models for reconstructing missing flow data. Environ. Monit. Assess. 2010, 166, 421-434.
-
(2010)
Environ. Monit. Assess.
, vol.166
, pp. 421-434
-
-
Dastorani, M.T.1
Moghadamnia, A.2
Piri, J.3
Rico-Ramirez, M.4
-
12
-
-
0024815393
-
Chaos in rainfall
-
Rodriguez-Iturbe, I.; Febres De Power, B.; Sharifi, M.B.; Georgakakos, K.P. Chaos in rainfall. Water Resour. Res. 1989, 25, 1667-1675.
-
(1989)
Water Resour. Res.
, vol.25
, pp. 1667-1675
-
-
Rodriguez-Iturbe, I.1
Febres De Power, B.2
Sharifi, M.B.3
Georgakakos, K.P.4
-
13
-
-
84939446484
-
RunoffResponse to ClimateWarming and Forest Disturbance in a Mid-Mountain Basin
-
Langhammer, J.; Su, Y.; Bernsteinová, J. RunoffResponse to ClimateWarming and Forest Disturbance in a Mid-Mountain Basin. Water 2015, 7, 3320-3342.
-
(2015)
Water
, vol.7
, pp. 3320-3342
-
-
Langhammer, J.1
Su, Y.2
Bernsteinová, J.3
-
14
-
-
22544452840
-
The database of soil information system-PUGIS
-
Kozák, J.; Nemecek, J.; Jetmar, M. The database of soil information system-PUGIS. Rostl. Vyroba UZPI 1996, 42, 529-534.
-
(1996)
Rostl. Vyroba UZPI
, vol.42
, pp. 529-534
-
-
Kozák, J.1
Nemecek, J.2
Jetmar, M.3
-
15
-
-
84858250001
-
Comparison between active learning method and support vector machine for runoffmodeling
-
Shahraiyni, H.; Ghafouri, M.; Shouraki, S.; Saghafian, B.; Nasseri, M. Comparison between active learning method and support vector machine for runoffmodeling. J. Hydrol. Hydromech. 2012, 60, 16-32.
-
(2012)
J. Hydrol. Hydromech.
, vol.60
, pp. 16-32
-
-
Shahraiyni, H.1
Ghafouri, M.2
Shouraki, S.3
Saghafian, B.4
Nasseri, M.5
-
16
-
-
84964443433
-
SVM and ANN: A comparative evaluation
-
Dehradun, India, 4-5 September 2015; IEEE: New York, NY, USA
-
Sahay, T.; Aggarwal, A.; Bansal, A.; Chandra, M. SVM and ANN: A comparative evaluation. In Proceedings of the 1st International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4-5 September 2015; IEEE: New York, NY, USA, 2015; pp. 960-964.
-
(2015)
Proceedings of the 1st International Conference on Next Generation Computing Technologies (NGCT)
, pp. 960-964
-
-
Sahay, T.1
Aggarwal, A.2
Bansal, A.3
Chandra, M.4
-
17
-
-
0032005702
-
An artificial neural network approach to rainfall-runoffmodelling
-
Dawson, C.W.;Wilby, R. An artificial neural network approach to rainfall-runoffmodelling. Hydrol. Sci. J. 1998, 43, 47-66.
-
(1998)
Hydrol. Sci. J.
, vol.43
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
18
-
-
0034298851
-
Application of tank, NAM, ARMA and neural network models to flood forecasting
-
Tingsanchali, T.; Gautam, M.R. Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrol. Process. 2000, 14, 2473-2487.
-
(2000)
Hydrol. Process.
, vol.14
, pp. 2473-2487
-
-
Tingsanchali, T.1
Gautam, M.R.2
-
19
-
-
85002692720
-
Neural network modelling trade-offs: Small might be beautiful but perhaps bigger is better?
-
Abrahart, R.J.; Dawson, C.W. Neural network modelling trade-offs: Small might be beautiful but perhaps bigger is better? Assembly 2009, 11, 4832.
-
(2009)
Assembly
, vol.11
, pp. 4832
-
-
Abrahart, R.J.1
Dawson, C.W.2
-
20
-
-
1642265059
-
Modelling deforestation using GIS and artificial neural networks
-
Mas, J. Modelling deforestation using GIS and artificial neural networks. Environ. Model. Softw. 2004, 19, 461-471.
-
(2004)
Environ. Model. Softw.
, vol.19
, pp. 461-471
-
-
Mas, J.1
-
21
-
-
84900410874
-
Bayesian networks for environmental flow decision-making and an application in the Yellow River estuary, China
-
Pang, A.P.; Sun, T. Bayesian networks for environmental flow decision-making and an application in the Yellow River estuary, China. Hydrol. Earth Syst. Sci. 2014, 18, 1641-1651.
-
(2014)
Hydrol. Earth Syst. Sci.
, vol.18
, pp. 1641-1651
-
-
Pang, A.P.1
Sun, T.2
-
22
-
-
80054678981
-
Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting
-
Zhang, X.; Liang, F.; Yu, B.; Zong, Z. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting. J. Hydrol. 2011, 409, 696-709.
-
(2011)
J. Hydrol.
, vol.409
, pp. 696-709
-
-
Zhang, X.1
Liang, F.2
Yu, B.3
Zong, Z.4
-
23
-
-
84979943791
-
A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks
-
Xue, J.; Gui, D.; Zhao, Y.; Lei, J.; Zeng, F.; Feng, X.; Mao, D.; Shareef, M. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks. J. Hydrol. 2016, 540, 1209-1222.
-
(2016)
J. Hydrol.
, vol.540
, pp. 1209-1222
-
-
Xue, J.1
Gui, D.2
Zhao, Y.3
Lei, J.4
Zeng, F.5
Feng, X.6
Mao, D.7
Shareef, M.8
-
24
-
-
0010864753
-
Pattern Recognition using Generalized Portrait Method
-
Vapnik, V.N.; Lerner, A. Pattern Recognition using Generalized Portrait Method. Autom. Remote Control 1963, 24, 774-780.
-
(1963)
Autom. Remote Control
, vol.24
, pp. 774-780
-
-
Vapnik, V.N.1
Lerner, A.2
-
25
-
-
84994099635
-
Statistical Learning Theory
-
Wiley: New York, NY, USA
-
Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 2, p. 736.
-
(1998)
, vol.2
, pp. 736
-
-
Vapnik, V.N.1
-
26
-
-
84863306895
-
Forecasting performance of LS-SVM for nonlinear hydrological time series
-
Hwang, S.H.; Ham, D.H.; Kim, J.H. Forecasting performance of LS-SVM for nonlinear hydrological time series. KSCE J. Civ. Eng. 2012, 16, 870-882.
-
(2012)
KSCE J. Civ. Eng.
, vol.16
, pp. 870-882
-
-
Hwang, S.H.1
Ham, D.H.2
Kim, J.H.3
-
27
-
-
0242351905
-
Financial time series forecasting using support vector machines
-
Kim, K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307-319.
-
(2003)
Neurocomputing
, vol.55
, pp. 307-319
-
-
Kim, K.1
-
29
-
-
18844406797
-
Comparison of SVM andANNperformance for handwritten character classification
-
Kusadasi, Turkey, 28-30 April
-
Kahraman, F.; Capar, A.; Ayvaci, A.; Demirel, H.; Gokmen, M. Comparison of SVM andANNperformance for handwritten character classification. In Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, Kusadasi, Turkey, 28-30 April 2004; pp. 1-10.
-
(2004)
Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference
, pp. 1-10
-
-
Kahraman, F.1
Capar, A.2
Ayvaci, A.3
Demirel, H.4
Gokmen, M.5
-
30
-
-
4544279852
-
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
MIT Press: Cambridge, MA, USA
-
Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2002.
-
(2002)
-
-
Scholkopf, B.1
Smola, A.J.2
-
31
-
-
84899447875
-
Support vector machine applications in the field of hydrology: A review
-
Raghavendra, S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. J. 2014, 19, 372-386.
-
(2014)
Appl. Soft Comput. J.
, vol.19
, pp. 372-386
-
-
Raghavendra, S.1
Deka, P.C.2
-
32
-
-
33746830757
-
Using support vector machines for long-term discharge prediction
-
Lin, J.-Y.; Cheng, C.-T.; Chau, K.-W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599-612.
-
(2006)
Hydrol. Sci. J.
, vol.51
, pp. 599-612
-
-
Lin, J.-Y.1
Cheng, C.-T.2
Chau, K.-W.3
-
33
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
Yu, P.S.; Chen, S.T.; Chang, I. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328, 704-716.
-
(2006)
J. Hydrol.
, vol.328
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.3
-
34
-
-
84964034032
-
Support vector regression for rainfall-runoffmodeling in urban drainage: A comparison with the EPA's storm water management model
-
Granata, F.; Gargano, R.; de Marinis, G. Support vector regression for rainfall-runoffmodeling in urban drainage: A comparison with the EPA's storm water management model. Water 2016, 8, 69.
-
(2016)
Water
, vol.8
, pp. 69
-
-
Granata, F.1
Gargano, R.2
de Marinis, G.3
-
35
-
-
79953796890
-
Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
-
Noori, R.; Karbassi, A.R.; Moghaddamnia, A.; Han, D.; Zokaei-Ashtiani, M.H.; Farokhnia, A.; Gousheh, M.G. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401, 177-189.
-
(2011)
J. Hydrol.
, vol.401
, pp. 177-189
-
-
Noori, R.1
Karbassi, A.R.2
Moghaddamnia, A.3
Han, D.4
Zokaei-Ashtiani, M.H.5
Farokhnia, A.6
Gousheh, M.G.7
-
36
-
-
0003798635
-
An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
-
Cambridge University Press: Cambridge, UK
-
Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000.
-
(2000)
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
37
-
-
0035398081
-
Model induction with support vector machines: Introduction and applications
-
Dibike, Y.B.; Velickov, S.; Solomatine, D.; Abbott, M.B. Model induction with support vector machines: Introduction and applications. J. Comput. Civ. Eng. 2001, 15, 208-216.
-
(2001)
J. Comput. Civ. Eng.
, vol.15
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
39
-
-
84956628443
-
Predicting time series with support vector machin
-
Lausanne, Switzerland, 8-10 October
-
Muller, K.; Smola, A.; Ratsch, G.; Scholkopf, B.; Kohlmorgen, J.; Vapnik, V. Predicting time series with support vector machines. In Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland, 8-10 October 1997; Volume 1327, pp. 999-1004.
-
(1997)
Proceedings of the International Conference on Artificial Neural Networks
, vol.1327
, pp. 999-1004
-
-
Muller, K.1
Smola, A.2
Ratsch, G.3
Scholkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
41
-
-
0001149082
-
Support vector regression with automatic accuracy control
-
Springer: Heidelberg, Germany
-
Schölkopf, B.; Bartlett, P.; Smola, A.; Williamson, R. Support vector regression with automatic accuracy control. In ICANN 98; Springer: Heidelberg, Germany, 1998; pp. 111-116.
-
(1998)
ICANN 98
, pp. 111-116
-
-
Schölkopf, B.1
Bartlett, P.2
Smola, A.3
Williamson, R.4
-
42
-
-
85002562904
-
Support Vector Regression for Non-Stationary Time Series
-
Master's Thesis, University ofTennessee, Knoxville, TN, USA
-
Ojemakinde, B.T. Support Vector Regression for Non-Stationary Time Series. Master's Thesis, University ofTennessee, Knoxville, TN, USA, 2006.
-
(2006)
-
-
Ojemakinde, B.T.1
-
43
-
-
33749316421
-
Support Vector Regression for Financial Time Series Forecastin
-
Springer: Heidelberg, Germany
-
Hao, W.; Yu, S. Support Vector Regression for Financial Time Series Forecasting. In Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management; Springer: Heidelberg, Germany, 2006; Volume 207, pp. 825-830.
-
(2006)
Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management
, vol.207
, pp. 825-830
-
-
Hao, W.1
Yu, S.2
-
44
-
-
34548045281
-
The performance of nu-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy
-
Zhu, D.; Ji, B.; Meng, C.; Shi, B.; Tu, Z.; Qing, Z. The performance of nu-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy. Anal. Chim. Acta 2007, 598, 227-234.
-
(2007)
Anal. Chim. Acta
, vol.598
, pp. 227-234
-
-
Zhu, D.1
Ji, B.2
Meng, C.3
Shi, B.4
Tu, Z.5
Qing, Z.6
-
45
-
-
78651076564
-
KNIME-the Konstanz information miner: Version 2.0 and beyond
-
Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME-the Konstanz information miner: Version 2.0 and beyond. AcM SIGKDD Explor. Newsl. 2009, 11, 26-31.
-
(2009)
AcM SIGKDD Explor. Newsl.
, vol.11
, pp. 26-31
-
-
Berthold, M.R.1
Cebron, N.2
Dill, F.3
Gabriel, T.R.4
Kötter, T.5
Meinl, T.6
Ohl, P.7
Thiel, K.8
Wiswedel, B.9
-
46
-
-
84880160058
-
An overview of interactive visual data mining techniques for knowledge discovery
-
Stahl, F.; Gabrys, B.; Gaber, M.M.; Berendsen, M. An overview of interactive visual data mining techniques for knowledge discovery. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2013, 3, 239-256.
-
(2013)
Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
, vol.3
, pp. 239-256
-
-
Stahl, F.1
Gabrys, B.2
Gaber, M.M.3
Berendsen, M.4
-
47
-
-
0038895405
-
Training nu-support vector regression: Theory and algorithms
-
Chang, C.-C.; Lin, C.-J. Training nu-support vector regression: Theory and algorithms. Neural Comput. 2002, 14, 1959-1977.
-
(2002)
Neural Comput.
, vol.14
, pp. 1959-1977
-
-
Chang, C.-C.1
Lin, C.-J.2
-
48
-
-
33746834358
-
Identification of support vector machines for runoffmodelling
-
Bray, M.; Han, D. Identification of support vector machines for runoffmodelling. J. Hydroinf. 2004, 6, 265-280.
-
(2004)
J. Hydroinf.
, vol.6
, pp. 265-280
-
-
Bray, M.1
Han, D.2
-
49
-
-
24944559785
-
Support Vector Machines: Theory and Applications
-
Springer: Heidelberg, Germany
-
Wang, L. Support Vector Machines: Theory and Applications; Springer: Heidelberg, Germany, 2005; Volume 177.
-
(2005)
, vol.177
-
-
Wang, L.1
-
50
-
-
60749114973
-
Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data
-
Hais, M.; Jonášová, M.; Langhammer, J.; Kučera, T. Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835-845.
-
(2009)
Remote Sens. Environ.
, vol.113
, pp. 835-845
-
-
Hais, M.1
Jonášová, M.2
Langhammer, J.3
Kučera, T.4
-
51
-
-
84924087777
-
Restoration of central-european mountain norway spruce forest 15 years after natural and anthropogenic disturbance
-
Nováková, M.H.; Edwards-Jonášová, M. Restoration of central-european mountain norway spruce forest 15 years after natural and anthropogenic disturbance. For. Ecol. Manag. 2015, 344, 120-130.
-
(2015)
For. Ecol. Manag.
, vol.344
, pp. 120-130
-
-
Nováková, M.H.1
Edwards-Jonášová, M.2
-
52
-
-
76249109837
-
Peat bogs influence on runoffprocess: Case study of the vydra and k?remelná river basins in the šumava mountains, Southwestern Czechia
-
Janskỳ, B.; Kocum, J. Peat bogs influence on runoffprocess: Case study of the vydra and k?remelná river basins in the šumava mountains, Southwestern Czechia. Geografie 2008, 113, 383-399.
-
(2008)
Geografie
, vol.113
, pp. 383-399
-
-
Janskỳ, B.1
Kocum, J.2
-
53
-
-
80053998217
-
The effects of physical-geographic factors on flood episodes extremity in the Vydra River basin
-
Čurda, J.; Janskỳ, B.; Kocum, J. The effects of physical-geographic factors on flood episodes extremity in the Vydra River basin. Geografie 2011, 116, 335-353.
-
(2011)
Geografie
, vol.116
, pp. 335-353
-
-
Čurda, J.1
Janskỳ, B.2
Kocum, J.3
-
54
-
-
84255171706
-
Modelling the Impact of Land Cover Changes on Flood Mitigation in the Upper Lužnice Basin
-
Váňová, V.; Langhammer, J. Modelling the Impact of Land Cover Changes on Flood Mitigation in the Upper Lužnice Basin. J. Hydrol. Hydromech. 2011, 59, 262-274.
-
(2011)
J. Hydrol. Hydromech.
, vol.59
, pp. 262-274
-
-
Váňová, V.1
Langhammer, J.2
-
55
-
-
36048983502
-
Rainfall-runoffmodelling in small and middle-large catchments-An overview
-
Jeníček, M. Rainfall-runoffmodelling in small and middle-large catchments-An overview. Geografie 2006, 111, 305-313.
-
(2006)
Geografie
, vol.111
, pp. 305-313
-
-
Jeníček, M.1
-
56
-
-
14644392676
-
Kernel Methods for Pattern Analysis
-
Cambridge University Press: Cambridge, UK
-
Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004; Volume 47.
-
(2004)
, vol.47
-
-
Shawe-Taylor, J.1
Cristianini, N.2
-
57
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens, J.A.K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85-105.
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
|