-
1
-
-
0037790917
-
The enzymes, regulation, and genetics of bile acid synthesis
-
Russell, D. W. 2003. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72:137-174.
-
(2003)
Annu. Rev. Biochem.
, vol.72
, pp. 137-174
-
-
Russell, D.W.1
-
2
-
-
63849295015
-
The enterohepatic circulation of bile acids in mammals: Form and functions
-
Hofmann, A. F. 2009. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. (Landmark Ed.). 14:2584-2598.
-
(2009)
Front. Biosci. (Landmark Ed.).
, vol.14
, pp. 2584-2598
-
-
Hofmann, A.F.1
-
4
-
-
84888275080
-
Nuclear receptor control of enterohepatic circulation
-
Gonzalez, F. J. 2012. Nuclear receptor control of enterohepatic circulation. Compr. Physiol. 2:2811-2828.
-
(2012)
Compr. Physiol.
, vol.2
, pp. 2811-2828
-
-
Gonzalez, F.J.1
-
5
-
-
52949152347
-
Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid
-
Deo, A. K., and S. M. Bandiera. 2008. Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid. Drug Metab. Dispos. 36:1983-1991.
-
(2008)
Drug Metab. Dispos.
, vol.36
, pp. 1983-1991
-
-
Deo, A.K.1
Bandiera, S.M.2
-
6
-
-
0018191563
-
Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine
-
Hardison, W. G. 1978. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology. 75:71-75.
-
(1978)
Gastroenterology.
, vol.75
, pp. 71-75
-
-
Hardison, W.G.1
-
7
-
-
84920401295
-
Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
-
Jiang, C., C. Xie, F. Li, L. Zhang, R. G. Nichols, K. W. Krausz, J. Cai, Y. Qi, Z. Z. Fang, S. Takahashi, et al. 2015. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125:386-402.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 386-402
-
-
Jiang, C.1
Xie, C.2
Li, F.3
Zhang, L.4
Nichols, R.G.5
Krausz, K.W.6
Cai, J.7
Qi, Y.8
Fang, Z.Z.9
Takahashi, S.10
-
8
-
-
84949932843
-
Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction
-
Jiang, C., C. Xie, Y. Lv, J. Li, K. W. Krausz, J. Shi, C. N. Brocker, D. Desai, S. G. Amin, W. H. Bisson, et al. 2015. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6:10166.
-
(2015)
Nat. Commun.
, vol.6
, pp. 10166
-
-
Jiang, C.1
Xie, C.2
Lv, Y.3
Li, J.4
Krausz, K.W.5
Shi, J.6
Brocker, C.N.7
Desai, D.8
Amin, S.G.9
Bisson, W.H.10
-
9
-
-
84887960056
-
Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity
-
Li, F., C. Jiang, K. W. Krausz, Y. Li, I. Albert, H. Hao, K. M. Fabre, J. B. Mitchell, A. D. Patterson, and F. J. Gonzalez. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4:2384.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2384
-
-
Li, F.1
Jiang, C.2
Krausz, K.W.3
Li, Y.4
Albert, I.5
Hao, H.6
Fabre, K.M.7
Mitchell, J.B.8
Patterson, A.D.9
Gonzalez, F.J.10
-
11
-
-
27844546989
-
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
-
Inagaki, T., M. Choi, A. Moschetta, L. Peng, C. L. Cummins, J. G. McDonald, G. Luo, S. A. Jones, B. Goodwin, J. A. Richardson, et al. 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:217-225.
-
(2005)
Cell Metab.
, vol.2
, pp. 217-225
-
-
Inagaki, T.1
Choi, M.2
Moschetta, A.3
Peng, L.4
Cummins, C.L.5
McDonald, J.G.6
Luo, G.7
Jones, S.A.8
Goodwin, B.9
Richardson, J.A.10
-
12
-
-
0842312531
-
Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternativesplice variants
-
Nelson, D. R., D. C. Zeldin, S. M. Hoffman, L. J. Maltais, H. M. Wain, and D. W. Nebert. 2004. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternativesplice variants. Pharmacogenetics. 14:1-18.
-
(2004)
Pharmacogenetics.
, vol.14
, pp. 1-18
-
-
Nelson, D.R.1
Zeldin, D.C.2
Hoffman, S.M.3
Maltais, L.J.4
Wain, H.M.5
Nebert, D.W.6
-
13
-
-
84901056303
-
Deletion of 30 murine cytochrome p450 genes results in viable mice with compromised drug metabolism
-
Scheer, N., L. A. McLaughlin, A. Rode, A. K. Macleod, C. J. Henderson, and C. R. Wolf. 2014. Deletion of 30 murine cytochrome p450 genes results in viable mice with compromised drug metabolism. Drug Metab. Dispos. 42:1022-1030.
-
(2014)
Drug Metab. Dispos.
, vol.42
, pp. 1022-1030
-
-
Scheer, N.1
McLaughlin, L.A.2
Rode, A.3
Macleod, A.K.4
Henderson, C.J.5
Wolf, C.R.6
-
14
-
-
54349128898
-
Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment
-
Cheung, C., and F. J. Gonzalez. 2008. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J. Pharmacol. Exp. Ther. 327:288-299.
-
(2008)
J. Pharmacol. Exp. Ther.
, vol.327
, pp. 288-299
-
-
Cheung, C.1
Gonzalez, F.J.2
-
15
-
-
84893103243
-
Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications
-
Scheer, N., and C. R. Wolf. 2014. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica. 44:96-108.
-
(2014)
Xenobiotica.
, vol.44
, pp. 96-108
-
-
Scheer, N.1
Wolf, C.R.2
-
16
-
-
36049034219
-
Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism
-
van Herwaarden, A. E., E. Wagenaar, C. M. van der Kruijssen, R. A. van Waterschoot, J. W. Smit, J. Y. Song, M. A. van der Valk, O. van Tellingen, J. W. van der Hoorn, H. Rosing, et al. 2007. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism. J. Clin. Invest. 117:3583-3592.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 3583-3592
-
-
Van Herwaarden, A.E.1
Wagenaar, E.2
Van Der Kruijssen, C.M.3
Van Waterschoot, R.A.4
Smit, J.W.5
Song, J.Y.6
Van Der Valk, M.A.7
Van Tellingen, O.8
Van Der Hoorn, J.W.9
Rosing, H.10
-
17
-
-
80052011288
-
Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line
-
Hasegawa, M., Y. Kapelyukh, H. Tahara, J. Seibler, A. Rode, S. Krueger, D. N. Lee, C. R. Wolf, and N. Scheer. 2011. Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line. Mol. Pharmacol. 80:518-528.
-
(2011)
Mol. Pharmacol.
, vol.80
, pp. 518-528
-
-
Hasegawa, M.1
Kapelyukh, Y.2
Tahara, H.3
Seibler, J.4
Rode, A.5
Krueger, S.6
Lee, D.N.7
Wolf, C.R.8
Scheer, N.9
-
18
-
-
84455162074
-
Modeling human cytochrome P450 2D6 metabolism and drug-drug interaction by a novel panel of knockout and humanized mouse lines
-
Scheer, N., Y. Kapelyukh, J. McEwan, V. Beuger, L. A. Stanley, A. Rode, and C. R. Wolf. 2012. Modeling human cytochrome P450 2D6 metabolism and drug-drug interaction by a novel panel of knockout and humanized mouse lines. Mol. Pharmacol. 81:63-72.
-
(2012)
Mol. Pharmacol.
, vol.81
, pp. 63-72
-
-
Scheer, N.1
Kapelyukh, Y.2
McEwan, J.3
Beuger, V.4
Stanley, L.A.5
Rode, A.6
Wolf, C.R.7
-
19
-
-
34250184674
-
Generation of 'humanized' hCYP1A1-1A2-Cyp1a1/1a2 (-/-) mouse line
-
Dragin, N., S. Uno, B. Wang, T. P. Dalton, and D. W. Nebert. 2007. Generation of 'humanized' hCYP1A1-1A2-Cyp1a1/1a2 (-/-) mouse line. Biochem. Biophys. Res. Commun. 359:635-642.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.359
, pp. 635-642
-
-
Dragin, N.1
Uno, S.2
Wang, B.3
Dalton, T.P.4
Nebert, D.W.5
-
20
-
-
84869760907
-
Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines
-
Scheer, N., Y. Kapelyukh, L. Chatham, A. Rode, S. Buechel, and C. R. Wolf. 2012. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines. Mol. Pharmacol. 82:1022-1029.
-
(2012)
Mol. Pharmacol.
, vol.82
, pp. 1022-1029
-
-
Scheer, N.1
Kapelyukh, Y.2
Chatham, L.3
Rode, A.4
Buechel, S.5
Wolf, C.R.6
-
21
-
-
84925778793
-
Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and cholinedeficient diet
-
Tanaka, N., S. Takahashi, Y. Zhang, K. W. Krausz, P. B. Smith, A. D. Patterson, and F. J. Gonzalez. 2015. Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and cholinedeficient diet. Biochim. Biophys. Acta. 1852:1242-1252.
-
(2015)
Biochim. Biophys. Acta.
, vol.1852
, pp. 1242-1252
-
-
Tanaka, N.1
Takahashi, S.2
Zhang, Y.3
Krausz, K.W.4
Smith, P.B.5
Patterson, A.D.6
Gonzalez, F.J.7
-
22
-
-
0038507099
-
Liver-specific deletion of the NADPHcytochrome P450 reductase gene: Impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase
-
Gu, J., Y. Weng, Q. Y. Zhang, H. Cui, M. Behr, L. Wu, W. Yang, L. Zhang, and X. Ding. 2003. Liver-specific deletion of the NADPHcytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J. Biol. Chem. 278:25895-25901.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 25895-25901
-
-
Gu, J.1
Weng, Y.2
Zhang, Q.Y.3
Cui, H.4
Behr, M.5
Wu, L.6
Yang, W.7
Zhang, L.8
Ding, X.9
-
23
-
-
84907163701
-
Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum
-
Cheng, X., Y. Zhang, and C. D. Klaassen. 2014. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum. J. Pharmacol. Exp. Ther. 351:105-113.
-
(2014)
J. Pharmacol. Exp. Ther.
, vol.351
, pp. 105-113
-
-
Cheng, X.1
Zhang, Y.2
Klaassen, C.D.3
-
24
-
-
0018546249
-
Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria
-
Fedorowski, T., G. Salen, G. S. Tint, and E. Mosbach. 1979. Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria. Gastroenterology. 77:1068-1073.
-
(1979)
Gastroenterology.
, vol.77
, pp. 1068-1073
-
-
Fedorowski, T.1
Salen, G.2
Tint, G.S.3
Mosbach, E.4
-
25
-
-
7544221726
-
Detoxification of lithocholic acid, a toxic bile acid: Relevance to drug hepatotoxicity
-
Hofmann, A. F. 2004. Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab. Rev. 36:703-722.
-
(2004)
Drug Metab. Rev.
, vol.36
, pp. 703-722
-
-
Hofmann, A.F.1
-
26
-
-
84873342775
-
Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
-
Sayin, S. I., A. Wahlstrom, J. Felin, S. Jantti, H. U. Marschall, K. Bamberg, B. Angelin, T. Hyotylainen, M. Oresic, and F. Backhed. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17:225-235.
-
(2013)
Cell Metab.
, vol.17
, pp. 225-235
-
-
Sayin, S.I.1
Wahlstrom, A.2
Felin, J.3
Jantti, S.4
Marschall, H.U.5
Bamberg, K.6
Angelin, B.7
Hyotylainen, T.8
Oresic, M.9
Backhed, F.10
-
27
-
-
84929607710
-
Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity
-
Mueller, M., A. Thorell, T. Claudel, P. Jha, H. Koefeler, C. Lackner, B. Hoesel, G. Fauler, T. Stojakovic, C. Einarsson, et al. 2015. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J. Hepatol. 62:1398-1404.
-
(2015)
J. Hepatol.
, vol.62
, pp. 1398-1404
-
-
Mueller, M.1
Thorell, A.2
Claudel, T.3
Jha, P.4
Koefeler, H.5
Lackner, C.6
Hoesel, B.7
Fauler, G.8
Stojakovic, T.9
Einarsson, C.10
-
28
-
-
0026532215
-
Tauro-beta-muricholate preserves choleresis and prevents taurocholate-induced cholestasis in colchicine-treated rat liver
-
Katagiri, K., T. Nakai, M. Hoshino, T. Hayakawa, H. Ohnishi, Y. Okayama, T. Yamada, T. Ohiwa, M. Miyaji, and T. Takeuchi. 1992. Tauro-beta-muricholate preserves choleresis and prevents taurocholate-induced cholestasis in colchicine-treated rat liver. Gastroenterology. 102:1660-1667.
-
(1992)
Gastroenterology.
, vol.102
, pp. 1660-1667
-
-
Katagiri, K.1
Nakai, T.2
Hoshino, M.3
Hayakawa, T.4
Ohnishi, H.5
Okayama, Y.6
Yamada, T.7
Ohiwa, T.8
Miyaji, M.9
Takeuchi, T.10
-
29
-
-
67649408860
-
Regulation of human CYP2C18 and CYP2C19 in transgenic mice: Influence of castration, testosterone, and growth hormone
-
Löfgren, S., R. M. Baldwin, M. Carlerös, Y. Terelius, R. Fransson-Steen, J. Mwinyi, D. J. Waxman, and M. Ingelman-Sundberg. 2009. Regulation of human CYP2C18 and CYP2C19 in transgenic mice: influence of castration, testosterone, and growth hormone. Drug Metab. Dispos. 37:1505-1512.
-
(2009)
Drug Metab. Dispos.
, vol.37
, pp. 1505-1512
-
-
Löfgren, S.1
Baldwin, R.M.2
Carlerös, M.3
Terelius, Y.4
Fransson-Steen, R.5
Mwinyi, J.6
Waxman, D.J.7
Ingelman-Sundberg, M.8
-
30
-
-
84920570015
-
Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile
-
Greathouse, K. L., C. C. Harris, and S. J. Bultman. 2015. Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile. Cell Metab. 21:9-10.
-
(2015)
Cell Metab.
, vol.21
, pp. 9-10
-
-
Greathouse, K.L.1
Harris, C.C.2
Bultman, S.J.3
-
31
-
-
84925500413
-
Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
-
Buffie, C. G., V. Bucci, R. R. Stein, P. T. McKenney, L. Ling, A. Gobourne, D. No, H. Liu, M. Kinnebrew, A. Viale, et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 517:205-208.
-
(2015)
Nature.
, vol.517
, pp. 205-208
-
-
Buffie, C.G.1
Bucci, V.2
Stein, R.R.3
McKenney, P.T.4
Ling, L.5
Gobourne, A.6
No, D.7
Liu, H.8
Kinnebrew, M.9
Viale, A.10
-
32
-
-
0019615490
-
Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively
-
Hirano, S., and N. Masuda. 1981. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J. Lipid Res. 22:1060-1068.
-
(1981)
J. Lipid Res.
, vol.22
, pp. 1060-1068
-
-
Hirano, S.1
Masuda, N.2
-
33
-
-
84922937097
-
MAFG is a transcriptional repressor of bile acid synthesis and metabolism
-
de Aguiar Vallim, T. Q., E. J. Tarling, H. Ahn, L. R. Hagey, C. E. Romanoski, R. G. Lee, M. J. Graham, H. Motohashi, M. Yamamoto, and P. A. Edwards. 2015. MAFG is a transcriptional repressor of bile acid synthesis and metabolism. Cell Metab. 21:298-310.
-
(2015)
Cell Metab.
, vol.21
, pp. 298-310
-
-
De Aguiar Vallim, T.Q.1
Tarling, E.J.2
Ahn, H.3
Hagey, L.R.4
Romanoski, C.E.5
Lee, R.G.6
Graham, M.J.7
Motohashi, H.8
Yamamoto, M.9
Edwards, P.A.10
-
34
-
-
84924594572
-
The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes
-
Seeley, R. J., A. P. Chambers, and D. A. Sandoval. 2015. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 21:369-378.
-
(2015)
Cell Metab.
, vol.21
, pp. 369-378
-
-
Seeley, R.J.1
Chambers, A.P.2
Sandoval, D.A.3
-
35
-
-
84917706868
-
Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice
-
Jones, R. D., A. M. Lopez, E. Y. Tong, K. S. Posey, J. C. Chuang, J. J. Repa, and S. D. Turley. 2015. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice. Steroids. 93:87-95.
-
(2015)
Steroids.
, vol.93
, pp. 87-95
-
-
Jones, R.D.1
Lopez, A.M.2
Tong, E.Y.3
Posey, K.S.4
Chuang, J.C.5
Repa, J.J.6
Turley, S.D.7
-
36
-
-
69149083245
-
TGR5-mediated bile acid sensing controls glucose homeostasis
-
Thomas, C., A. Gioiello, L. Noriega, A. Strehle, J. Oury, G. Rizzo, A. Macchiarulo, H. Yamamoto, C. Mataki, M. Pruzanski, et al. 2009. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10:167-177.
-
(2009)
Cell Metab.
, vol.10
, pp. 167-177
-
-
Thomas, C.1
Gioiello, A.2
Noriega, L.3
Strehle, A.4
Oury, J.5
Rizzo, G.6
Macchiarulo, A.7
Yamamoto, H.8
Mataki, C.9
Pruzanski, M.10
-
37
-
-
0020562269
-
The metabolism of chenodeoxycholic acid to beta-muricholic acid in rat liver
-
Botham, K. M., and G. S. Boyd. 1983. The metabolism of chenodeoxycholic acid to beta-muricholic acid in rat liver. Eur. J. Biochem. 134:191-196.
-
(1983)
Eur. J. Biochem.
, vol.134
, pp. 191-196
-
-
Botham, K.M.1
Boyd, G.S.2
|