-
1
-
-
0034697846
-
Identification of a novel FGF, FGF-21, preferentially expressed in the liver
-
Nishimura T., Nakatake Y., Konishi M., Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 2000, 1492:203-206.
-
(2000)
Biochim. Biophys. Acta
, vol.1492
, pp. 203-206
-
-
Nishimura, T.1
Nakatake, Y.2
Konishi, M.3
Itoh, N.4
-
2
-
-
84897109882
-
Inventing new medicines: the FGF21 story
-
Kharitonenkov A., Adams A.C. Inventing new medicines: the FGF21 story. Mol. Metab. 2014, 3:221-229.
-
(2014)
Mol. Metab.
, vol.3
, pp. 221-229
-
-
Kharitonenkov, A.1
Adams, A.C.2
-
3
-
-
84883260199
-
Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones
-
Adams A.C., Coskun T., Cheng C.C., Farrell L.S.O., Dubois S.L., Kharitonenkov A. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol. Metab. 2013, 2:205-214.
-
(2013)
Mol. Metab.
, vol.2
, pp. 205-214
-
-
Adams, A.C.1
Coskun, T.2
Cheng, C.C.3
Farrell, L.S.O.4
Dubois, S.L.5
Kharitonenkov, A.6
-
4
-
-
84863012022
-
FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis
-
Fisher F.M., Kleiner S., Douris N., Fox E.C., Mepani R.J., Verdeguer F., Wu J., Kharitonenkov A., Flier J.S., Maratos-Flier E., Spiegelman B.M. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012, 26:271-281.
-
(2012)
Genes Dev.
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
Spiegelman, B.M.11
-
5
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
Hondares E., Iglesias R., Giralt A., Gonzalez F.J., Giralt M., Mampel T., Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 2011, 286:12983-12990.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
Iglesias, R.2
Giralt, A.3
Gonzalez, F.J.4
Giralt, M.5
Mampel, T.6
Villarroya, F.7
-
6
-
-
79960743932
-
Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21
-
Chartoumpekis D.V., Habeos I.G., Ziros P.G., Psyrogiannis A.I., Kyriazopoulou V.E., Papavassiliou A.G. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol. Med. 2011, 17:736-740.
-
(2011)
Mol. Med.
, vol.17
, pp. 736-740
-
-
Chartoumpekis, D.V.1
Habeos, I.G.2
Ziros, P.G.3
Psyrogiannis, A.I.4
Kyriazopoulou, V.E.5
Papavassiliou, A.G.6
-
7
-
-
84907211065
-
FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signaling
-
Ribas F., Villarroya J., Hondares E., Giralt M., Villarroya F. FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signaling. Biochem. J. 2014, 463:191-199.
-
(2014)
Biochem. J.
, vol.463
, pp. 191-199
-
-
Ribas, F.1
Villarroya, J.2
Hondares, E.3
Giralt, M.4
Villarroya, F.5
-
8
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams A.C., Yang C., Coskun T., Cheng C.C., Gimeno R.E., Luo Y., Kharitonenkov A. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2013, 2:31-37.
-
(2013)
Mol. Metab.
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
Cheng, C.C.4
Gimeno, R.E.5
Luo, Y.6
Kharitonenkov, A.7
-
9
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008, 149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
Moller, D.E.7
Kharitonenkov, A.8
-
10
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., Gromada J., Brozinick J.T., Hawkins E.D., Wroblewski V.J., Li D.S., Mehrbod F., Jaskunas S.R., Shanafelt A.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005, 115:1627-1635.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
11
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov A., Wroblewski V.J., Koester A., Chen Y.F., Clutinger C.K., Tigno X.T., Hansen B.C., Shanafelt A.B., Etgen G.J. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007, 148:774-781.
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
12
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
Gaich G., Chien J.Y., Fu H., Glass L.C., Deeg M.A., Holland W.L., Kharitonenkov A., Bumol T., Schilske H.K., Moller D.E. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013, 18:333-340.
-
(2013)
Cell Metab.
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Deeg, M.A.5
Holland, W.L.6
Kharitonenkov, A.7
Bumol, T.8
Schilske, H.K.9
Moller, D.E.10
-
13
-
-
0032489437
-
Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha)
-
Aoyama T., Peters J.M., Iritani N., Nakajima T., Furihata K., Hashimoto T., Gonzalez F.J. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J. Biol. Chem. 1998, 273:5678-5684.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 5678-5684
-
-
Aoyama, T.1
Peters, J.M.2
Iritani, N.3
Nakajima, T.4
Furihata, K.5
Hashimoto, T.6
Gonzalez, F.J.7
-
14
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T., Dutchak P., Zhao G., Ding X., Gautron L., Parameswara V., Li Y., Goetz R., Mohammadi M., Esser V., Elmquist J.K., Gerard R.D., Burgess S.C., Hammer R.E., Mangelsdorf D.J., Kliewer S.A. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5:415-425.
-
(2007)
Cell Metab.
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
15
-
-
77951243562
-
Control of steroid 21-oic acid synthesis by peroxisome proliferator-activated receptor alpha and role of the hypothalamic-pituitary-adrenal axis
-
Wang T., Shah Y.M., Matsubara T., Zhen Y., Tanabe T., Nagano T., Fotso S., Krausz K.W., Zabriskie T.M., Idle J.R., Gonzalez F.J. Control of steroid 21-oic acid synthesis by peroxisome proliferator-activated receptor alpha and role of the hypothalamic-pituitary-adrenal axis. J. Biol. Chem. 2010, 285:7670-7685.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7670-7685
-
-
Wang, T.1
Shah, Y.M.2
Matsubara, T.3
Zhen, Y.4
Tanabe, T.5
Nagano, T.6
Fotso, S.7
Krausz, K.W.8
Zabriskie, T.M.9
Idle, J.R.10
Gonzalez, F.J.11
-
16
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman M.K., Pissios P., Kennedy A.R., Koukos G., Flier J.S., Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007, 5:426-437.
-
(2007)
Cell Metab.
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
17
-
-
84864105994
-
Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21
-
Cyphert H.A., Ge X., Kohan A.B., Salati L.M., Zhang Y., Hillgartner F.B. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J. Biol. Chem. 2012, 287:25123-25138.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 25123-25138
-
-
Cyphert, H.A.1
Ge, X.2
Kohan, A.B.3
Salati, L.M.4
Zhang, Y.5
Hillgartner, F.B.6
-
18
-
-
84899642303
-
Glucagon stimulates hepatic FGF21 secretion through a PKA- and EPAC-dependent posttranscriptional mechanism
-
Cyphert H.A., Alonge K.M., Ippagunta S.M., Hillgartner F.B. Glucagon stimulates hepatic FGF21 secretion through a PKA- and EPAC-dependent posttranscriptional mechanism. PLoS One 2014, 9:e94996.
-
(2014)
PLoS One
, vol.9
, pp. e94996
-
-
Cyphert, H.A.1
Alonge, K.M.2
Ippagunta, S.M.3
Hillgartner, F.B.4
-
19
-
-
74049108945
-
Fibroblast growth factor 21: from pharmacology to physiology
-
Kliewer S.A., Mangelsdorf D.J. Fibroblast growth factor 21: from pharmacology to physiology. Am. J. Clin. Nutr. 2010, 91:254S-257S.
-
(2010)
Am. J. Clin. Nutr.
, vol.91
, pp. 254S-257S
-
-
Kliewer, S.A.1
Mangelsdorf, D.J.2
-
20
-
-
84906487180
-
Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1α-mediated antioxidant capacity in mice
-
Ye D., Wang Y., Li H., Jia W., Man K., Lo C.M., Wang Y., Lam K.S., Xu A. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1α-mediated antioxidant capacity in mice. Hepatology 2014, 60:977-989.
-
(2014)
Hepatology
, vol.60
, pp. 977-989
-
-
Ye, D.1
Wang, Y.2
Li, H.3
Jia, W.4
Man, K.5
Lo, C.M.6
Wang, Y.7
Lam, K.S.8
Xu, A.9
-
21
-
-
84861324386
-
FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis
-
Feingold K.R., Grunfeld C., Heuer J.G., Gupta A., Cramer M., Zhang T., Shigenaga J.K., Patzek S.M., Chan Z.W., Moser A., Bina H., Kharitonenkov A. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology 2012, 153:2689-2700.
-
(2012)
Endocrinology
, vol.153
, pp. 2689-2700
-
-
Feingold, K.R.1
Grunfeld, C.2
Heuer, J.G.3
Gupta, A.4
Cramer, M.5
Zhang, T.6
Shigenaga, J.K.7
Patzek, S.M.8
Chan, Z.W.9
Moser, A.10
Bina, H.11
Kharitonenkov, A.12
-
22
-
-
77955690182
-
Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites
-
Neuschwander-Tetri B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010, 52:774-788.
-
(2010)
Hepatology
, vol.52
, pp. 774-788
-
-
Neuschwander-Tetri, B.A.1
-
23
-
-
78049522194
-
Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis
-
Tilg H., Moschen A.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010, 52:1836-1846.
-
(2010)
Hepatology
, vol.52
, pp. 1836-1846
-
-
Tilg, H.1
Moschen, A.R.2
-
24
-
-
79959517565
-
Human fatty liver disease: old questions and new insight
-
Cohen J.C., Horton J.D., Hobbs H.H. Human fatty liver disease: old questions and new insight. Science 2011, 332:1519-1523.
-
(2011)
Science
, vol.332
, pp. 1519-1523
-
-
Cohen, J.C.1
Horton, J.D.2
Hobbs, H.H.3
-
25
-
-
77955474305
-
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
-
Dushay J., Chui P.C., Gopalakrishnan G.S., Varela-Rey M., Crawley M., Fisher F.M., Badman M.K., Martinez-Chantar M.L., Maratos-Flier E. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010, 139:456-463.
-
(2010)
Gastroenterology
, vol.139
, pp. 456-463
-
-
Dushay, J.1
Chui, P.C.2
Gopalakrishnan, G.S.3
Varela-Rey, M.4
Crawley, M.5
Fisher, F.M.6
Badman, M.K.7
Martinez-Chantar, M.L.8
Maratos-Flier, E.9
-
26
-
-
77956519052
-
Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease
-
Yilmaz Y., Eren F., Yonal O., Kurt R., Aktas B., Celikel C.A., Ozdogan O., Imeryuz N., Kalayci C., Avsar E. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2010, 40:887-892.
-
(2010)
Eur. J. Clin. Investig.
, vol.40
, pp. 887-892
-
-
Yilmaz, Y.1
Eren, F.2
Yonal, O.3
Kurt, R.4
Aktas, B.5
Celikel, C.A.6
Ozdogan, O.7
Imeryuz, N.8
Kalayci, C.9
Avsar, E.10
-
27
-
-
77957359658
-
Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride
-
Li H., Fang Q., Gao F., Fan J., Zhou J., Wang X., Zhang H., Pan X., Bao Y., Xiang K., Xu A., Jia W. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J. Hepatol. 2010, 53:934-940.
-
(2010)
J. Hepatol.
, vol.53
, pp. 934-940
-
-
Li, H.1
Fang, Q.2
Gao, F.3
Fan, J.4
Zhou, J.5
Wang, X.6
Zhang, H.7
Pan, X.8
Bao, Y.9
Xiang, K.10
Xu, A.11
Jia, W.12
-
28
-
-
84874117479
-
High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China
-
Li H., Dong K., Fang Q., Hou X., Zhou M., Bao Y., Xiang K., Xu A., Jia W. High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China. J. Hepatol. 2013, 58:557-563.
-
(2013)
J. Hepatol.
, vol.58
, pp. 557-563
-
-
Li, H.1
Dong, K.2
Fang, Q.3
Hou, X.4
Zhou, M.5
Bao, Y.6
Xiang, K.7
Xu, A.8
Jia, W.9
-
29
-
-
84907766271
-
Role of white adipose lipolysis in the development of NASH induced by methionine- and choline-deficient diet
-
Tanaka N., Takahashi S., Fang Z.Z., Matsubara T., Krausz K.W., Qu A., Gonzalez F.J. Role of white adipose lipolysis in the development of NASH induced by methionine- and choline-deficient diet. Biochim. Biophys. Acta 2014, 1841:1596-1607.
-
(2014)
Biochim. Biophys. Acta
, vol.1841
, pp. 1596-1607
-
-
Tanaka, N.1
Takahashi, S.2
Fang, Z.Z.3
Matsubara, T.4
Krausz, K.W.5
Qu, A.6
Gonzalez, F.J.7
-
30
-
-
84863502669
-
Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis
-
Tanaka N., Matsubara T., Krausz K.W., Patterson A.D., Gonzalez F.J. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 2012, 56:118-129.
-
(2012)
Hepatology
, vol.56
, pp. 118-129
-
-
Tanaka, N.1
Matsubara, T.2
Krausz, K.W.3
Patterson, A.D.4
Gonzalez, F.J.5
-
31
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones
-
Dutchak P.A., Katafuchi T., Bookout A.L., Choi J.H., Yu R.T., Mangelsdorf D.J., Kliewer S.A. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 2012, 148:556-567.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
32
-
-
84871452509
-
Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis
-
Matsubara T., Tanaka N., Krausz K.W., Manna S.K., Kang D.W., Anderson E.R., Luecke H., Patterson A.D., Shah Y.M., Gonzalez F.J. Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis. Cell Metab. 2012, 16:634-644.
-
(2012)
Cell Metab.
, vol.16
, pp. 634-644
-
-
Matsubara, T.1
Tanaka, N.2
Krausz, K.W.3
Manna, S.K.4
Kang, D.W.5
Anderson, E.R.6
Luecke, H.7
Patterson, A.D.8
Shah, Y.M.9
Gonzalez, F.J.10
-
33
-
-
77954370584
-
CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis
-
Cazanave S.C., Elmi N.A., Akazawa Y., Bronk S.F., Mott J.L., Gores G.J. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299:G236-G243.
-
(2010)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.299
, pp. G236-G243
-
-
Cazanave, S.C.1
Elmi, N.A.2
Akazawa, Y.3
Bronk, S.F.4
Mott, J.L.5
Gores, G.J.6
-
34
-
-
80655149472
-
Death receptor 5 signaling promotes hepatocyte lipoapoptosis
-
Cazanave S.C., Mott J.L., Bronk S.F., Werneburg N.W., Fingas C.D., Meng X.W., Finnberg N., El-Deiry W.S., Kaufmann S.H., Gores G.J. Death receptor 5 signaling promotes hepatocyte lipoapoptosis. J. Biol. Chem. 2011, 286:39336-39348.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 39336-39348
-
-
Cazanave, S.C.1
Mott, J.L.2
Bronk, S.F.3
Werneburg, N.W.4
Fingas, C.D.5
Meng, X.W.6
Finnberg, N.7
El-Deiry, W.S.8
Kaufmann, S.H.9
Gores, G.J.10
-
35
-
-
84921921686
-
Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice
-
Tanaka N., Takahashi S., Matsubara T., Jiang C., Sakamoto W., Chanturiya T., Teng R., Gavrilova O., Gonzalez F.J. Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J. Biol. Chem. 2015, 290:3092-3105.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 3092-3105
-
-
Tanaka, N.1
Takahashi, S.2
Matsubara, T.3
Jiang, C.4
Sakamoto, W.5
Chanturiya, T.6
Teng, R.7
Gavrilova, O.8
Gonzalez, F.J.9
-
36
-
-
84920401295
-
Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
-
Jiang C., Xie C., Li F., Zhang L., Nichols R.G., Krausz K.W., Cai J., Qi Y., Fang Z.Z., Takahashi S., Tanaka N., Desai D., Amin S.G., Albert I., Patterson A.D., Gonzalez F.J. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 2015, 125:386-402.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 386-402
-
-
Jiang, C.1
Xie, C.2
Li, F.3
Zhang, L.4
Nichols, R.G.5
Krausz, K.W.6
Cai, J.7
Qi, Y.8
Fang, Z.Z.9
Takahashi, S.10
Tanaka, N.11
Desai, D.12
Amin, S.G.13
Albert, I.14
Patterson, A.D.15
Gonzalez, F.J.16
-
37
-
-
33745116619
-
Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis
-
Karaskov E., Scott C., Zhang L., Teodoro T., Ravazzola M., Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 2006, 147:3398-3407.
-
(2006)
Endocrinology
, vol.147
, pp. 3398-3407
-
-
Karaskov, E.1
Scott, C.2
Zhang, L.3
Teodoro, T.4
Ravazzola, M.5
Volchuk, A.6
-
38
-
-
43549110007
-
FGF21 attenuates lipolysis in human adipocytes - a possible link to improved insulin sensitivity
-
Arner P., Pettersson A., Mitchell P.J., Dunbar J.D., Kharitonenkov A., Rydén M. FGF21 attenuates lipolysis in human adipocytes - a possible link to improved insulin sensitivity. FEBS Lett. 2008, 582:1725-1730.
-
(2008)
FEBS Lett.
, vol.582
, pp. 1725-1730
-
-
Arner, P.1
Pettersson, A.2
Mitchell, P.J.3
Dunbar, J.D.4
Kharitonenkov, A.5
Rydén, M.6
-
39
-
-
70349472910
-
Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice
-
Li X., Ge H., Weiszmann J., Hecht R., Li Y.S., Véniant M.M., Xu J., Wu X., Lindberg R., Li Y. Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice. FEBS Lett. 2009, 583:3230-3234.
-
(2009)
FEBS Lett.
, vol.583
, pp. 3230-3234
-
-
Li, X.1
Ge, H.2
Weiszmann, J.3
Hecht, R.4
Li, Y.S.5
Véniant, M.M.6
Xu, J.7
Wu, X.8
Lindberg, R.9
Li, Y.10
-
40
-
-
18244382304
-
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
-
Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 2005, 115:1343-1351.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1343-1351
-
-
Donnelly, K.L.1
Smith, C.I.2
Schwarzenberg, S.J.3
Jessurun, J.4
Boldt, M.D.5
Parks, E.J.6
-
41
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
Emanuelli B., Vienberg S.G., Smyth G., Cheng C., Stanford K.I., Arumugam M., Michael M.D., Adams A.C., Kharitonenkov A., Kahn C.R. Interplay between FGF21 and insulin action in the liver regulates metabolism. J. Clin. Invest. 2014, 124:515-527.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 515-527
-
-
Emanuelli, B.1
Vienberg, S.G.2
Smyth, G.3
Cheng, C.4
Stanford, K.I.5
Arumugam, M.6
Michael, M.D.7
Adams, A.C.8
Kharitonenkov, A.9
Kahn, C.R.10
-
42
-
-
84908291960
-
Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets
-
Fisher F.M., Chui P.C., Nasser I.A., Popov Y., Cunniff J.C., Lundasen T., Kharitonenkov A., Schuppan D., Flier J.S., Maratos-Flier E. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 2014, 147:1073-1083.
-
(2014)
Gastroenterology
, vol.147
, pp. 1073-1083
-
-
Fisher, F.M.1
Chui, P.C.2
Nasser, I.A.3
Popov, Y.4
Cunniff, J.C.5
Lundasen, T.6
Kharitonenkov, A.7
Schuppan, D.8
Flier, J.S.9
Maratos-Flier, E.10
-
43
-
-
78751496304
-
Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning
-
Ong K.T., Mashek M.T., Bu S.Y., Greenberg A.S., Mashek D.G. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 2011, 53:116-126.
-
(2011)
Hepatology
, vol.53
, pp. 116-126
-
-
Ong, K.T.1
Mashek, M.T.2
Bu, S.Y.3
Greenberg, A.S.4
Mashek, D.G.5
-
44
-
-
84874664386
-
Fibroblast growth factor 21 is induced by endoplasmic reticulum stress
-
Schaap F.G., Kremer A.E., Lamers W.H., Jansen P.L., Gaemers I.C. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 2013, 95:692-699.
-
(2013)
Biochimie
, vol.95
, pp. 692-699
-
-
Schaap, F.G.1
Kremer, A.E.2
Lamers, W.H.3
Jansen, P.L.4
Gaemers, I.C.5
-
45
-
-
84908200877
-
Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis
-
Jiang S., Yan C., Fang Q.C., Shao M.L., Zhang Y.L., Liu Y., Deng Y.P., Shan B., Liu J.Q., Li H.T., Yang L., Zhou J., Dai Z., Liu Y., Jia W.P. Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J. Biol. Chem. 2014, 289:29751-29765.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 29751-29765
-
-
Jiang, S.1
Yan, C.2
Fang, Q.C.3
Shao, M.L.4
Zhang, Y.L.5
Liu, Y.6
Deng, Y.P.7
Shan, B.8
Liu, J.Q.9
Li, H.T.10
Yang, L.11
Zhou, J.12
Dai, Z.13
Liu, Y.14
Jia, W.P.15
-
46
-
-
70350093621
-
Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice
-
Johnson C.L., Weston J.Y., Chadi S.A., Fazio E.N., Huff M.W., Kharitonenkov A., Köester A., Pin C.L. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 2009, 137:1795-1804.
-
(2009)
Gastroenterology
, vol.137
, pp. 1795-1804
-
-
Johnson, C.L.1
Weston, J.Y.2
Chadi, S.A.3
Fazio, E.N.4
Huff, M.W.5
Kharitonenkov, A.6
Köester, A.7
Pin, C.L.8
|