메뉴 건너뛰기




Volumn 2016-August, Issue , 2016, Pages

DeepBurning: Automatic generation of FPGA-based learning accelerators for the Neural Network family

Author keywords

Hardware Software co simulation; High Level Synthesis; SoC design; Verification

Indexed keywords

ACCELERATION; ARTIFICIAL INTELLIGENCE; AUTOMATION; COMPUTER AIDED DESIGN; COMPUTER VISION; DESIGN; ENERGY EFFICIENCY; FIELD PROGRAMMABLE GATE ARRAYS (FPGA); HARDWARE; HIGH LEVEL SYNTHESIS; LEARNING SYSTEMS; PROGRAMMABLE LOGIC CONTROLLERS; RECONFIGURABLE HARDWARE; SYSTEM-ON-CHIP; VERIFICATION;

EID: 84985993737     PISSN: 0738100X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2897937.2898002     Document Type: Conference Paper
Times cited : (52)

References (11)
  • 1
    • 84876591853 scopus 로고    scopus 로고
    • Neural acceleration for general-purposeapproximate programs
    • Esmaeilzadeh et al., "Neural acceleration for general-purposeapproximate programs,". In Proc. MICRO, 2012.
    • (2012) Proc. MICRO
    • Esmaeilzadeh1
  • 2
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," in IEEE Signal Processing Magazine,, vol. 29, no. 6, pp. 82-97, 2012.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 3
    • 84913580146 scopus 로고    scopus 로고
    • Caffé: Convolutional architecture for fast feature embedding
    • Y Jia et al., "Caffé: Convolutional architecture for fast feature embedding," in ACM Proc. Multimedia, 2014.
    • (2014) ACM Proc. Multimedia
    • Jia, Y.1
  • 4
    • 84964793469 scopus 로고    scopus 로고
    • DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • T. Chen et al., "DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning,"in Proc. ASPLOS, 2014.
    • (2014) Proc. ASPLOS
    • Chen, T.1
  • 5
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky et al., "Imagenet classification with deep convolutional neural networks," in Proc. NIPS, 2012.
    • (2012) Proc. NIPS
    • Krizhevsky, A.1
  • 6
    • 84977127791 scopus 로고    scopus 로고
    • Memory-centric accelerator design for convolutional neural networks
    • M. Peemen et al., "Memory-centric accelerator design for convolutional neural networks," in Proc. ICCD, 2013.
    • (2013) Proc. ICCD
    • Peemen, M.1
  • 7
    • 84977166345 scopus 로고    scopus 로고
    • Optimizing FPGA-based accelerator design for deep convolutional neural networks
    • C. Zhang et al., "Optimizing FPGA-based accelerator design for deep convolutional neural networks,"in Proc. FPGA, 2015.
    • (2015) Proc. FPGA
    • Zhang, C.1
  • 8
    • 84948382785 scopus 로고    scopus 로고
    • DeepID-Net: Deformable deep convolutional neural networks for object detection
    • W. Ouyang et al,. "DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection," in Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Ouyang, W.1
  • 9
    • 84985953494 scopus 로고    scopus 로고
    • Jointly modeling embedding and translation to bridge video and language
    • Y. Pan et. al., "Jointly Modeling Embedding and Translation to Bridge Video and Language," in arXiv, 2015
    • (2015) ArXiv
    • Pan, Y.1
  • 11
    • 0025430594 scopus 로고
    • Sorting n objects with a k-sorter
    • R. Beigel et al., "Sorting n Objects With a k-Sorter,"IEEE Trans, on Compute., 1990.
    • (1990) IEEE Trans, on Compute
    • Beigel, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.