-
1
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 2013;17:491-506.
-
(2013)
Cell Metab
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
3
-
-
67650868959
-
Mitochondrial dynamics in mammalian health and disease
-
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009;89:799-845.
-
(2009)
Physiol Rev
, vol.89
, pp. 799-845
-
-
Liesa, M.1
Palacín, M.2
Zorzano, A.3
-
4
-
-
84887321199
-
Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling
-
Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 2013;342:734-737.
-
(2013)
Science
, vol.342
, pp. 734-737
-
-
Kasahara, A.1
Cipolat, S.2
Chen, Y.3
Dorn, G.W.4
Scorrano, L.5
-
5
-
-
84898648553
-
Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure
-
Wikstrom JD, Mahdaviani K, Liesa M, et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J 2014;33:418-436.
-
(2014)
EMBO J
, vol.33
, pp. 418-436
-
-
Wikstrom, J.D.1
Mahdaviani, K.2
Liesa, M.3
-
6
-
-
70349650451
-
Mitochondrial networking protects beta-cells from nutrient-induced apoptosis
-
Molina AJ, Wikstrom JD, Stiles L, et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 2009;58:2303-2315.
-
(2009)
Diabetes
, vol.58
, pp. 2303-2315
-
-
Molina, A.J.1
Wikstrom, J.D.2
Stiles, L.3
-
7
-
-
84899955772
-
Mitochondrial response to nutrient availability and its role in metabolic disease
-
Gao AW, Cantó C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol Med 2014;6:580-589.
-
(2014)
EMBO Mol Med
, vol.6
, pp. 580-589
-
-
Gao, A.W.1
Cantó, C.2
Houtkooper, R.H.3
-
8
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003;160:189-200.
-
(2003)
J Cell Biol
, vol.160
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
Fraser, S.E.5
Chan, D.C.6
-
9
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008;456:605-610.
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
De Brito, O.M.1
Scorrano, L.2
-
10
-
-
0037593949
-
Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity
-
Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 2003;278:17190-17197.
-
(2003)
J Biol Chem
, vol.278
, pp. 17190-17197
-
-
Bach, D.1
Pich, S.2
Soriano, F.X.3
-
11
-
-
84859448265
-
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
-
Sebastián D, Hernández-Alvarez MI, Segalés J, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 2012;109: 5523-5528.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 5523-5528
-
-
Sebastián, D.1
Hernández-Alvarez, M.I.2
Segalés, J.3
-
12
-
-
34347236921
-
Organelle isolation: Functional mitochondria from mouse liver, muscle and cultured fibroblasts
-
Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2007;2:287-295.
-
(2007)
Nat Protoc
, vol.2
, pp. 287-295
-
-
Frezza, C.1
Cipolat, S.2
Scorrano, L.3
-
13
-
-
84955677790
-
High-resolution respirometry for mitochondrial characterization of ex vivo mouse tissues
-
Cantó C, Garcia-Roves PM. High-resolution respirometry for mitochondrial characterization of ex vivo mouse tissues. Curr Protoc Mouse Biol 2015;5:135-153.
-
(2015)
Curr Protoc Mouse, Biol
, vol.5
, pp. 135-153
-
-
Cantó, C.1
Garcia-Roves, P.M.2
-
14
-
-
34547601410
-
Mitochondrial fusion protects against neurodegeneration in the cerebellum
-
Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007;130:548-562.
-
(2007)
Cell
, vol.130
, pp. 548-562
-
-
Chen, H.1
McCaffery, J.M.2
Chan, D.C.3
-
15
-
-
0032898369
-
Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase
-
Postic C, Shiota M, Niswender KD, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999;274:305-315.
-
(1999)
J Biol Chem
, vol.274
, pp. 305-315
-
-
Postic, C.1
Shiota, M.2
Niswender, K.D.3
-
16
-
-
84860430699
-
Lipid-induced mitochondrial stress and insulin action in muscle
-
Muoio DM, Neufer PD. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab 2012;15:595-605.
-
(2012)
Cell Metab
, vol.15
, pp. 595-605
-
-
Muoio, D.M.1
Neufer, P.D.2
-
17
-
-
37449020075
-
Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
-
Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008;7:45-56.
-
(2008)
Cell Metab
, vol.7
, pp. 45-56
-
-
Koves, T.R.1
Ussher, J.R.2
Noland, R.C.3
-
19
-
-
2342509057
-
Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-Animal insulin resistance
-
An J, Muoio DM, Shiota M, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-Animal insulin resistance. Nat Med 2004;10:268-274.
-
(2004)
Nat Med
, vol.10
, pp. 268-274
-
-
An, J.1
Muoio, D.M.2
Shiota, M.3
-
20
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: An overview
-
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: An overview. Clin Sci (Lond) 2012;122:253-270.
-
(2012)
Clin Sci (Lond)
, vol.122
, pp. 253-270
-
-
Viollet, B.1
Guigas, B.2
Sanz, G.N.3
Leclerc, J.4
Foretz, M.5
Andreelli, F.6
-
21
-
-
84903524608
-
Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
-
Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014;510:542-546.
-
(2014)
Nature
, vol.510
, pp. 542-546
-
-
Madiraju, A.K.1
Erion, D.M.2
Rahimi, Y.3
-
22
-
-
84942195533
-
Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
-
Wang L, Ishihara T, Ibayashi Y, et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia 2015;58:2371-2380.
-
(2015)
Diabetologia
, vol.58
, pp. 2371-2380
-
-
Wang, L.1
Ishihara, T.2
Ibayashi, Y.3
-
23
-
-
0030630208
-
Microvesicular steatosis and steatohepatitis: Role of mitochondrial dysfunction and lipid peroxidation
-
Fromenty B, Berson A, Pessayre D. Microvesicular steatosis and steatohepatitis: Role of mitochondrial dysfunction and lipid peroxidation. J Hepatol 1997;26(Suppl. 1):13-22.
-
(1997)
J Hepatol
, vol.26
, pp. 13-22
-
-
Fromenty, B.1
Berson, A.2
Pessayre, D.3
-
24
-
-
84863011641
-
Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
-
Jheng HF, Tsai PJ, Guo SM, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 2012;32:309-319.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 309-319
-
-
Jheng, H.F.1
Tsai, P.J.2
Guo, S.M.3
-
25
-
-
84928600551
-
Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling
-
Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci U S A 2015;112:E2174-E2181.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E2174-E2181
-
-
Filadi, R.1
Greotti, E.2
Turacchio, G.3
Luini, A.4
Pozzan, T.5
Pizzo, P.6
-
26
-
-
33748314528
-
Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-Activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-Alpha, and mitofusin 2
-
Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-Activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-Alpha, and mitofusin 2. Diabetes 2006;55:1783-1791.
-
(2006)
Diabetes
, vol.55
, pp. 1783-1791
-
-
Soriano, F.X.1
Liesa, M.2
Bach, D.3
Chan, D.C.4
Palacín, M.5
Zorzano, A.6
-
27
-
-
84911958739
-
MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria
-
Lee JY, Kapur M, Li M, et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J Cell Sci 2014;127:4954-4963.
-
(2014)
J Cell Sci
, vol.127
, pp. 4954-4963
-
-
Lee, J.Y.1
Kapur, M.2
Li, M.3
-
28
-
-
84928212582
-
Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis
-
Pyakurel A, Savoia C, Hess D, Scorrano L. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol Cell 2015;58:244-254.
-
(2015)
Mol Cell
, vol.58
, pp. 244-254
-
-
Pyakurel, A.1
Savoia, C.2
Hess, D.3
Scorrano, L.4
-
29
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 2011;44:177-190.
-
(2011)
Mol Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
Shimazu, T.2
Jing, E.3
-
30
-
-
84879559745
-
Hepatic ERK activity plays a role in energy metabolism
-
Jiao P, Feng B, Li Y, He Q, Xu H. Hepatic ERK activity plays a role in energy metabolism. Mol Cell Endocrinol 2013;375:157-166.
-
(2013)
Mol Cell Endocrinol
, vol.375
, pp. 157-166
-
-
Jiao, P.1
Feng, B.2
Li, Y.3
He, Q.4
Xu, H.5
-
31
-
-
84255192658
-
Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROSinduced mitochondrial dysfunction and cell death
-
Papanicolaou KN, Ngoh GA, Dabkowski ER, et al. Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROSinduced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol 2012;302:H167-H179.
-
(2012)
Am J Physiol Heart Circ Physiol
, vol.302
, pp. H167-H179
-
-
Papanicolaou, K.N.1
Ngoh, G.A.2
Dabkowski, E.R.3
-
32
-
-
4043147798
-
Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins
-
Brand MD, Affourtit C, Esteves TC, et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004;37:755-767.
-
(2004)
Free Radic Biol, Med
, vol.37
, pp. 755-767
-
-
Brand, M.D.1
Affourtit, C.2
Esteves, T.C.3
-
33
-
-
79959350253
-
Extending life span by increasing oxidative stress
-
Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Radic Biol Med 2011;51:327-336.
-
(2011)
Free Radic Biol Med
, vol.51
, pp. 327-336
-
-
Ristow, M.1
Schmeisser, S.2
-
34
-
-
84878138385
-
Mitonuclear protein imbalance as a conserved longevity mechanism
-
Houtkooper RH, Mouchiroud L, Ryu D, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 2013;497:451-457.
-
(2013)
Nature
, vol.497
, pp. 451-457
-
-
Houtkooper, R.H.1
Mouchiroud, L.2
Ryu, D.3
-
35
-
-
84919615360
-
Metformin: From mechanisms of action to therapies
-
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab 2014;20:953-966.
-
(2014)
Cell Metab
, vol.20
, pp. 953-966
-
-
Foretz, M.1
Guigas, B.2
Bertrand, L.3
Pollak, M.4
Viollet, B.5
-
36
-
-
84918583229
-
Metformin directly acts on mitochondria to alter cellular bioenergetics
-
Andrzejewski S, Gravel SP, Pollak M, Pierre J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab 2014;2:12.
-
(2014)
Cancer Metab
, vol.2
, pp. 12
-
-
Andrzejewski, S.1
Gravel, S.P.2
Pollak, M.3
Pierre, J.4
-
37
-
-
43049117153
-
Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential
-
Guillery O, Malka F, Landes T, et al. Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell 2008; 100:315-325.
-
(2008)
Biol Cell
, vol.100
, pp. 315-325
-
-
Guillery, O.1
Malka, F.2
Landes, T.3
-
38
-
-
84884909413
-
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
-
Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013;155:160-171.
-
(2013)
Cell
, vol.155
, pp. 160-171
-
-
Cogliati, S.1
Frezza, C.2
Soriano, M.E.3
-
39
-
-
84879617853
-
Supercomplex assembly determines electron flux in the mitochondrial electron transport chain
-
Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 2013;340:1567-1570.
-
(2013)
Science
, vol.340
, pp. 1567-1570
-
-
Lapuente-Brun, E.1
Moreno-Loshuertos, R.2
Acín-Pérez, R.3
|