메뉴 건너뛰기




Volumn 35, Issue 2, 2017, Pages 374-385

Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis

Author keywords

Autism; Embryonic stem cells; Fragile X syndrome; Intellectual disability; Neurogenesis; Therapeutic window

Indexed keywords

AMYLOID PRECURSOR PROTEIN; BETA TUBULIN; BETAIII TUBULIN; CYCLIN DEPENDENT KINASE INHIBITOR 1B; FRAGILE X MENTAL RETARDATION PROTEIN; NEUROGENIC DIFFERENTIATION FACTOR; NEURON SPECIFIC NUCLEAR PROTEIN; PROTEIN; PROTEIN FMRP; PROTEIN FXR1P; PROTEIN FXR2P; UNCLASSIFIED DRUG; ASCL1 PROTEIN, MOUSE; BASIC HELIX LOOP HELIX TRANSCRIPTION FACTOR; SMALL INTERFERING RNA;

EID: 85000347719     PISSN: 10665099     EISSN: 15494918     Source Type: Journal    
DOI: 10.1002/stem.2505     Document Type: Article
Times cited : (31)

References (84)
  • 1
    • 50049086691 scopus 로고    scopus 로고
    • The Fragile X prevalence paradox
    • Hagerman PJ. The Fragile X prevalence paradox. J Med Genet 2008;45:498–499.
    • (2008) J Med Genet , vol.45 , pp. 498-499
    • Hagerman, P.J.1
  • 2
    • 0028246435 scopus 로고
    • Fmr1 knockout mice: A model to study Fragile X mental retardation. The Dutch-Belgian Fragile X Consortium
    • Bakker CE, Verheij C, Willemsen R et al. Fmr1 knockout mice: A model to study Fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 1994;78:23–33.
    • (1994) Cell , vol.78 , pp. 23-33
    • Bakker, C.E.1    Verheij, C.2    Willemsen, R.3
  • 3
    • 33244492432 scopus 로고    scopus 로고
    • The generation of a conditional Fmr1 knockout mouse model to study Fmrp function in vivo
    • Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L et al. The generation of a conditional Fmr1 knockout mouse model to study Fmrp function in vivo. Neurobiol Dis 2006;21:549–555.
    • (2006) Neurobiol Dis , vol.21 , pp. 549-555
    • Mientjes, E.J.1    Nieuwenhuizen, I.2    Kirkpatrick, L.3
  • 4
    • 0028971722 scopus 로고
    • The Fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2
    • Zhang Y, O’connor JP, Siomi MC et al. The Fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. EMBO J 1995;14:5358–5366.
    • (1995) EMBO J , vol.14 , pp. 5358-5366
    • Zhang, Y.1    O’connor, J.P.2    Siomi, M.C.3
  • 5
    • 33645993912 scopus 로고    scopus 로고
    • The Fragile X syndrome: Exploring its molecular basis and seeking a treatment
    • Bardoni B, Davidovic L, Bensaid M et al. The Fragile X syndrome: Exploring its molecular basis and seeking a treatment. Expert Rev Mol Med 2006;8:1–16.
    • (2006) Expert Rev Mol Med , vol.8 , pp. 1-16
    • Bardoni, B.1    Davidovic, L.2    Bensaid, M.3
  • 7
    • 53849110899 scopus 로고    scopus 로고
    • Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function
    • Bassell GJ, Warren ST. Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron 2008;60:201–214.
    • (2008) Neuron , vol.60 , pp. 201-214
    • Bassell, G.J.1    Warren, S.T.2
  • 8
    • 0037523396 scopus 로고    scopus 로고
    • CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the Fragile X protein
    • Schenck A, Bardoni B, Langmann C et al. CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the Fragile X protein. Neuron 2003;38:887–898.
    • (2003) Neuron , vol.38 , pp. 887-898
    • Schenck, A.1    Bardoni, B.2    Langmann, C.3
  • 9
    • 20144365993 scopus 로고    scopus 로고
    • FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts
    • Castets M, Schaeffer C, Bechara E et al. FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum Mol Genet 2005;14:835–844.
    • (2005) Hum Mol Genet , vol.14 , pp. 835-844
    • Castets, M.1    Schaeffer, C.2    Bechara, E.3
  • 10
    • 0025720084 scopus 로고
    • Analysis of neocortex in three males with the Fragile X syndrome
    • Hinton VJ, Brown WT, Wisniewski K et al. Analysis of neocortex in three males with the Fragile X syndrome. Am J Med Genet 1991;41:289–294.
    • (1991) Am J Med Genet , vol.41 , pp. 289-294
    • Hinton, V.J.1    Brown, W.T.2    Wisniewski, K.3
  • 11
    • 33746196574 scopus 로고    scopus 로고
    • Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond
    • Grossman AW, Aldridge GM, Weiler IJ et al. Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci 2006;26:7151–7155.
    • (2006) J Neurosci , vol.26 , pp. 7151-7155
    • Grossman, A.W.1    Aldridge, G.M.2    Weiler, I.J.3
  • 13
    • 84943758636 scopus 로고    scopus 로고
    • GABA and Glutamate: The Yin and Yang of Fragile X
    • Tranfaglia MR. GABA and Glutamate: The Yin and Yang of Fragile X. Cell Cycle 2015;14:2559.
    • (2015) Cell Cycle , vol.14 , pp. 2559
    • Tranfaglia, M.R.1
  • 14
    • 84924047062 scopus 로고    scopus 로고
    • Fragile X disappointments upset autism ambitions
    • Mullard A. Fragile X disappointments upset autism ambitions. Nat Rev Drug Discov 2015;14:151–153.
    • (2015) Nat Rev Drug Discov , vol.14 , pp. 151-153
    • Mullard, A.1
  • 16
    • 0027300283 scopus 로고
    • Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain
    • Abitbol M, Menini C, Delezoide AL et al. Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nat Genet 1993;4:147–153.
    • (1993) Nat Genet , vol.4 , pp. 147-153
    • Abitbol, M.1    Menini, C.2    Delezoide, A.L.3
  • 17
    • 0027176361 scopus 로고
    • The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a Fragile X premutation
    • Devys D, Lutz Y, Rouyer N et al. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a Fragile X premutation. Nat Genet 1993;4:335–340.
    • (1993) Nat Genet , vol.4 , pp. 335-340
    • Devys, D.1    Lutz, Y.2    Rouyer, N.3
  • 18
    • 84966147280 scopus 로고
    • Tissue specific expression of FMR-1 provides evidence for a functional role in Fragile X syndrome
    • Hinds HL, Ashley CT, Sutcliffe JS et al. Tissue specific expression of FMR-1 provides evidence for a functional role in Fragile X syndrome. Nat Genet 1993;3:36–43.
    • (1993) Nat Genet , vol.3 , pp. 36-43
    • Hinds, H.L.1    Ashley, C.T.2    Sutcliffe, J.S.3
  • 19
    • 79955625469 scopus 로고    scopus 로고
    • Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for Fragile X syndrome
    • Su T, Fan HX, Jiang T et al. Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for Fragile X syndrome. Psychopharmacology 2011;215:291–300.
    • (2011) Psychopharmacology , vol.215 , pp. 291-300
    • Su, T.1    Fan, H.X.2    Jiang, T.3
  • 20
    • 84874278109 scopus 로고    scopus 로고
    • Early intervention combined with targeted treatment promotes cognitive and behavioral improvements in young children with Fragile X syndrome
    • Winarni TI, Schneider A, Borodyanskara M et al. Early intervention combined with targeted treatment promotes cognitive and behavioral improvements in young children with Fragile X syndrome. Case Rep Genet 2012;2012:280813.
    • (2012) Case Rep Genet , vol.2012 , pp. 280813
    • Winarni, T.I.1    Schneider, A.2    Borodyanskara, M.3
  • 21
    • 84893640636 scopus 로고    scopus 로고
    • Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring
    • Tyzio R, Nardou R, Ferrari DC et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014;343:675–679.
    • (2014) Science , vol.343 , pp. 675-679
    • Tyzio, R.1    Nardou, R.2    Ferrari, D.C.3
  • 22
    • 84877302187 scopus 로고    scopus 로고
    • Treating Fragile X syndrome with the diuretic bumetanide: A case report
    • Lemonnier E, Robin G, Degrez C et al. Treating Fragile X syndrome with the diuretic bumetanide: A case report. Acta Paediatr 2013;102:288–290.
    • (2013) Acta Paediatr , vol.102 , pp. 288-290
    • Lemonnier, E.1    Robin, G.2    Degrez, C.3
  • 23
    • 39049094764 scopus 로고    scopus 로고
    • Neuroanatomy of Fragile X syndrome is associated with aberrant behavior and the Fragile X mental retardation protein (FMRP)
    • Gothelf D, Furfaro JA, Hoeft F et al. Neuroanatomy of Fragile X syndrome is associated with aberrant behavior and the Fragile X mental retardation protein (FMRP). Ann Neurol 2008;63:40–51.
    • (2008) Ann Neurol , vol.63 , pp. 40-51
    • Gothelf, D.1    Furfaro, J.A.2    Hoeft, F.3
  • 24
    • 73849141236 scopus 로고    scopus 로고
    • Gene, brain, and behavior relationships in Fragile X syndrome: Evidence from neuroimaging studies
    • Lightbody AA, Reiss AL. Gene, brain, and behavior relationships in Fragile X syndrome: Evidence from neuroimaging studies. Dev Disabil Res Rev 2009;15:343–352.
    • (2009) Dev Disabil Res Rev , vol.15 , pp. 343-352
    • Lightbody, A.A.1    Reiss, A.L.2
  • 25
    • 77952721973 scopus 로고    scopus 로고
    • Region-specific alterations in brain development in one- to three-year-old boys with Fragile X syndrome
    • Hoeft F, Carter JC, Lightbody AA et al. Region-specific alterations in brain development in one- to three-year-old boys with Fragile X syndrome. Proc Natl Acad Sci USA 2010;107:9335–9339.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 9335-9339
    • Hoeft, F.1    Carter, J.C.2    Lightbody, A.A.3
  • 26
    • 84955313662 scopus 로고    scopus 로고
    • Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain
    • Lai JK, Lerch JP, Doering LC et al. Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain. Neuroscience 2016;318:12–21.
    • (2016) Neuroscience , vol.318 , pp. 12-21
    • Lai, J.K.1    Lerch, J.P.2    Doering, L.C.3
  • 27
    • 39449115088 scopus 로고    scopus 로고
    • Normal neurogenesis but abnormal gene expression in human Fragile X cortical progenitor cells
    • Bhattacharyya A, McMillan E, Wallace K et al. Normal neurogenesis but abnormal gene expression in human Fragile X cortical progenitor cells. Stem Cells Dev 2008;17:107–117.
    • (2008) Stem Cells Dev , vol.17 , pp. 107-117
    • Bhattacharyya, A.1    McMillan, E.2    Wallace, K.3
  • 28
    • 29144442862 scopus 로고    scopus 로고
    • Altered differentiation of neural stem cells in Fragile X syndrome
    • Castrén M, Tervonen T, Kärkkäinen V et al. Altered differentiation of neural stem cells in Fragile X syndrome. Proc Natl Acad Sci USA 2005;102:17834–17839.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17834-17839
    • Castrén, M.1    Tervonen, T.2    Kärkkäinen, V.3
  • 29
    • 58149488779 scopus 로고    scopus 로고
    • Aberrant differentiation of glutamatergic cells in neocortex of mouse model for Fragile X syndrome
    • Tervonen TA, Louhivuori V, Sun X et al. Aberrant differentiation of glutamatergic cells in neocortex of mouse model for Fragile X syndrome. Neurobiol Dis 2009;33:250–259.
    • (2009) Neurobiol Dis , vol.33 , pp. 250-259
    • Tervonen, T.A.1    Louhivuori, V.2    Sun, X.3
  • 31
    • 84922571389 scopus 로고    scopus 로고
    • FMR1 epigenetic silencing commonly occurs in undifferentiated Fragile X-affected embryonic stem cells
    • Avitzour M, Mor-Shaked H, Yanovsky-Dagan S et al. FMR1 epigenetic silencing commonly occurs in undifferentiated Fragile X-affected embryonic stem cells. Stem Cell Rep 2014;3:699–706.
    • (2014) Stem Cell Rep , vol.3 , pp. 699-706
    • Avitzour, M.1    Mor-Shaked, H.2    Yanovsky-Dagan, S.3
  • 32
    • 35848937244 scopus 로고    scopus 로고
    • Developmental study of Fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos
    • Eiges R, Urbach A, Malcov M et al. Developmental study of Fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 2007;1:568–577.
    • (2007) Cell Stem Cell , vol.1 , pp. 568-577
    • Eiges, R.1    Urbach, A.2    Malcov, M.3
  • 33
    • 84872370488 scopus 로고    scopus 로고
    • Neural differentiation of Fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis
    • Telias M, Segal M, Ben-Yosef D. Neural differentiation of Fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis. Dev Biol 2013;374:32–45.
    • (2013) Dev Biol , vol.374 , pp. 32-45
    • Telias, M.1    Segal, M.2    Ben-Yosef, D.3
  • 34
    • 84943526479 scopus 로고    scopus 로고
    • Molecular mechanisms regulating impaired neurogenesis of Fragile X syndrome human embryonic stem cells
    • Telias M, Mayshar Y, Amit A et al. Molecular mechanisms regulating impaired neurogenesis of Fragile X syndrome human embryonic stem cells. Stem Cells Dev 2015;24:2353–2365.
    • (2015) Stem Cells Dev , vol.24 , pp. 2353-2365
    • Telias, M.1    Mayshar, Y.2    Amit, A.3
  • 35
    • 84947811938 scopus 로고    scopus 로고
    • Functional deficiencies in Fragile X neurons derived from human embryonic stem cells
    • Telias M, Kuznitsov-Yanovsky L, Segal M et al. Functional deficiencies in Fragile X neurons derived from human embryonic stem cells. J Neurosci 2015;35:15295–15306.
    • (2015) J Neurosci , vol.35 , pp. 15295-15306
    • Telias, M.1    Kuznitsov-Yanovsky, L.2    Segal, M.3
  • 36
    • 84896732761 scopus 로고    scopus 로고
    • Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in Fragile X syndrome
    • Colak D, Zaninovic N, Cohen MS et al. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in Fragile X syndrome. Science 2014;343:1002–1005.
    • (2014) Science , vol.343 , pp. 1002-1005
    • Colak, D.1    Zaninovic, N.2    Cohen, M.S.3
  • 37
    • 80053948646 scopus 로고    scopus 로고
    • Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of Fragile X syndrome
    • Sheridan SD, Theriault KM, Reis SA et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of Fragile X syndrome. PLoS One 2011;6:26203.
    • (2011) PLoS One , vol.6
    • Sheridan, S.D.1    Theriault, K.M.2    Reis, S.A.3
  • 38
    • 77956214743 scopus 로고    scopus 로고
    • Differential modeling of Fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells
    • Urbach A, Bar-Nur O, Daley GQ et al. Differential modeling of Fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 2010;6:407–411.
    • (2010) Cell Stem Cell , vol.6 , pp. 407-411
    • Urbach, A.1    Bar-Nur, O.2    Daley, G.Q.3
  • 39
    • 68049130971 scopus 로고    scopus 로고
    • Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation
    • Khalfallah O, Rouleau M, Barbry P et al. Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cells 2009;27:1529–1537.
    • (2009) Stem Cells , vol.27 , pp. 1529-1537
    • Khalfallah, O.1    Rouleau, M.2    Barbry, P.3
  • 40
    • 0346220073 scopus 로고    scopus 로고
    • Defined conditions for neural commitment and differentiation
    • Ying QL, Smith AG. Defined conditions for neural commitment and differentiation. Methods Enzymol 2003;365:327–341.
    • (2003) Methods Enzymol , vol.365 , pp. 327-341
    • Ying, Q.L.1    Smith, A.G.2
  • 41
    • 83055168319 scopus 로고    scopus 로고
    • A metabolomic and systems biology perspective on the brain of the Fragile X syndrome mouse model
    • Davidovic L, Navratil V, Bonaccorso CM et al. A metabolomic and systems biology perspective on the brain of the Fragile X syndrome mouse model. Genome Res 2011;21:2190–2202.
    • (2011) Genome Res , vol.21 , pp. 2190-2202
    • Davidovic, L.1    Navratil, V.2    Bonaccorso, C.M.3
  • 42
    • 68049140941 scopus 로고    scopus 로고
    • Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors
    • Khalfallah O, Ravassard P, Lagache CS et al. Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 2009;27:1643–1653.
    • (2009) Stem Cells , vol.27 , pp. 1643-1653
    • Khalfallah, O.1    Ravassard, P.2    Lagache, C.S.3
  • 43
    • 84876011845 scopus 로고    scopus 로고
    • A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability
    • Davidovic L, Durand N, Khalfallah O et al. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability. PLoS Genet 2013;9:1003367.
    • (2013) PLoS Genet , vol.9 , pp. 1003367
    • Davidovic, L.1    Durand, N.2    Khalfallah, O.3
  • 44
    • 67349246221 scopus 로고    scopus 로고
    • Tissue and developmental regulation of Fragile X mental retardation 1 exon 12 and 15 isoforms
    • Xie W, Dolzhanskaya N, LaFauci G et al. Tissue and developmental regulation of Fragile X mental retardation 1 exon 12 and 15 isoforms. Neurobiol Dis 2009;35:52–62.
    • (2009) Neurobiol Dis , vol.35 , pp. 52-62
    • Xie, W.1    Dolzhanskaya, N.2    LaFauci, G.3
  • 45
    • 4444238669 scopus 로고    scopus 로고
    • Biochemical evidence for the association of Fragile X mental retardation protein with brain polyribosomal ribonucleoparticles
    • Khandjian EW, Huot ME, Tremblay S et al. Biochemical evidence for the association of Fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc Natl Acad Sci USA 2004;101:13357–13362.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 13357-13362
    • Khandjian, E.W.1    Huot, M.E.2    Tremblay, S.3
  • 46
    • 0033027914 scopus 로고    scopus 로고
    • Mash1 regulates neurogenesis in the ventral telencephalon
    • Casarosa S, Fode C, Guillemot F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 1999;126:525–534.
    • (1999) Development , vol.126 , pp. 525-534
    • Casarosa, S.1    Fode, C.2    Guillemot, F.3
  • 47
    • 0031800991 scopus 로고    scopus 로고
    • A role for SOX1 in neural determination
    • Pevny LH, Sockanathan S, Placzek M et al. A role for SOX1 in neural determination. Development 1998;125:1967–1978.
    • (1998) Development , vol.125 , pp. 1967-1978
    • Pevny, L.H.1    Sockanathan, S.2    Placzek, M.3
  • 48
    • 0026005061 scopus 로고
    • Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells
    • Lo LC, Johnson JE, Wuenschell CW et al. Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 1991;5:1524–1537.
    • (1991) Genes Dev , vol.5 , pp. 1524-1537
    • Lo, L.C.1    Johnson, J.E.2    Wuenschell, C.W.3
  • 49
    • 33751255370 scopus 로고    scopus 로고
    • Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis
    • Nguyen L, Besson A, Roberts JM et al. Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis. Cell Cycle 2006;5:2314–2318.
    • (2006) Cell Cycle , vol.5 , pp. 2314-2318
    • Nguyen, L.1    Besson, A.2    Roberts, J.M.3
  • 50
    • 84866647783 scopus 로고    scopus 로고
    • Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons
    • Yazdani M, Deogracias R, Guy J et al. Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells 2012;30:2128–2139.
    • (2012) Stem Cells , vol.30 , pp. 2128-2139
    • Yazdani, M.1    Deogracias, R.2    Guy, J.3
  • 51
    • 1642493720 scopus 로고    scopus 로고
    • A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis
    • Gaudillière B, Konishi Y, de la Iglesia N et al. A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 2004;41:229–241.
    • (2004) Neuron , vol.41 , pp. 229-241
    • Gaudillière, B.1    Konishi, Y.2    de la Iglesia, N.3
  • 52
    • 33646796006 scopus 로고    scopus 로고
    • Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus
    • Hevner RF, Hodge RD, Daza RA et al. Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 2006;55:223–233.
    • (2006) Neurosci Res , vol.55 , pp. 223-233
    • Hevner, R.F.1    Hodge, R.D.2    Daza, R.A.3
  • 53
    • 11844304062 scopus 로고    scopus 로고
    • The role of the Rho GTPases in neuronal development
    • Govek EE, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev 2005;19:1–49.
    • (2005) Genes Dev , vol.19 , pp. 1-49
    • Govek, E.E.1    Newey, S.E.2    Van Aelst, L.3
  • 54
    • 84929510165 scopus 로고    scopus 로고
    • Ezrin mediates neuritogenesis via down-regulation of RhoA activity in cultured cortical neurons
    • Matsumoto Y, Inden M, Tamura A et al. Ezrin mediates neuritogenesis via down-regulation of RhoA activity in cultured cortical neurons. PLoS One 2014;9:105435.
    • (2014) PLoS One , vol.9
    • Matsumoto, Y.1    Inden, M.2    Tamura, A.3
  • 55
    • 33947195786 scopus 로고    scopus 로고
    • FMRP mediates mGluR5-dependent translation of amyloid precursor protein
    • Westmark CJ, Malter JS. FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 2007;5:52.
    • (2007) PLoS Biol , vol.5 , pp. 52
    • Westmark, C.J.1    Malter, J.S.2
  • 56
    • 79959910328 scopus 로고    scopus 로고
    • Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells
    • Freude KK, Penjwini M, Davis JL et al. Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells. J Biol Chem 2011;286:24264–24274.
    • (2011) J Biol Chem , vol.286 , pp. 24264-24274
    • Freude, K.K.1    Penjwini, M.2    Davis, J.L.3
  • 57
    • 34547093895 scopus 로고    scopus 로고
    • Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by beta-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells
    • Uchida Y, Nakano S, Gomi F et al. Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by beta-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells. J Biol Chem 2007;282:19700–19709.
    • (2007) J Biol Chem , vol.282 , pp. 19700-19709
    • Uchida, Y.1    Nakano, S.2    Gomi, F.3
  • 58
    • 0033612144 scopus 로고    scopus 로고
    • FMRP expression as a potential prognostic indicator in Fragile X syndrome
    • Tassone F, Hagerman RJ, Iklé DN et al. FMRP expression as a potential prognostic indicator in Fragile X syndrome. Am J Med Genet 1999;84:250–261.
    • (1999) Am J Med Genet , vol.84 , pp. 250-261
    • Tassone, F.1    Hagerman, R.J.2    Iklé, D.N.3
  • 59
    • 77957922490 scopus 로고    scopus 로고
    • Coffin-Lowry syndrome: A role for RSK2 in mammalian neurogenesis
    • Dugani CB, Paquin A, Kaplan DR et al. Coffin-Lowry syndrome: A role for RSK2 in mammalian neurogenesis. Dev Biol 2010;347:348–359.
    • (2010) Dev Biol , vol.347 , pp. 348-359
    • Dugani, C.B.1    Paquin, A.2    Kaplan, D.R.3
  • 60
    • 84887562180 scopus 로고    scopus 로고
    • The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth
    • Jolly LA, Homan CC, Jacob R et al. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet 2013;22:4673–4687.
    • (2013) Hum Mol Genet , vol.22 , pp. 4673-4687
    • Jolly, L.A.1    Homan, C.C.2    Jacob, R.3
  • 61
    • 84936993294 scopus 로고    scopus 로고
    • Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder
    • Fuchs C, Rimondini R, Viggiano R et al. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Neurobiol Dis 2015;82:298–310.
    • (2015) Neurobiol Dis , vol.82 , pp. 298-310
    • Fuchs, C.1    Rimondini, R.2    Viggiano, R.3
  • 62
    • 84930445078 scopus 로고    scopus 로고
    • HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain
    • Jolly LA, Nguyen LS, Domingo D et al. HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain. Hum Mol Genet 2015;24:3335–3347.
    • (2015) Hum Mol Genet , vol.24 , pp. 3335-3347
    • Jolly, L.A.1    Nguyen, L.S.2    Domingo, D.3
  • 63
    • 84979296632 scopus 로고    scopus 로고
    • ATRX is required for maintenance of the neuroprogenitor cell pool in the embryonic mouse brain
    • Ritchie K, Watson LA, Davidson B et al. ATRX is required for maintenance of the neuroprogenitor cell pool in the embryonic mouse brain. Biol Open 2014;3:1158–1163.
    • (2014) Biol Open , vol.3 , pp. 1158-1163
    • Ritchie, K.1    Watson, L.A.2    Davidson, B.3
  • 64
    • 0035879180 scopus 로고    scopus 로고
    • Abnormal development of dendritic spines in FMR1 knockout mice
    • Nimchinsky EA, Oberlander AM, Svoboda K. Abnormal development of dendritic spines in FMR1 knockout mice. J Neurosci 2001;21:5139–5146.
    • (2001) J Neurosci , vol.21 , pp. 5139-5146
    • Nimchinsky, E.A.1    Oberlander, A.M.2    Svoboda, K.3
  • 65
    • 45549107222 scopus 로고    scopus 로고
    • Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knockout mice
    • Bureau I, Shepherd GM, Svoboda K. Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knockout mice. J Neurosci 2008;28:5178–5188.
    • (2008) J Neurosci , vol.28 , pp. 5178-5188
    • Bureau, I.1    Shepherd, G.M.2    Svoboda, K.3
  • 66
    • 79251547954 scopus 로고    scopus 로고
    • FMRP regulates the transition from radial glial cells to intermediate progenitor cells during neocortical development
    • Saffary R, Xie Z. FMRP regulates the transition from radial glial cells to intermediate progenitor cells during neocortical development. J Neurosci 2011;31:1427–1439.
    • (2011) J Neurosci , vol.31 , pp. 1427-1439
    • Saffary, R.1    Xie, Z.2
  • 67
    • 79951535135 scopus 로고    scopus 로고
    • Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb
    • Scotto-Lomassese S, Nissant A, Mota T et al. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb. J Neurosci 2011;31:2205–2215.
    • (2011) J Neurosci , vol.31 , pp. 2205-2215
    • Scotto-Lomassese, S.1    Nissant, A.2    Mota, T.3
  • 68
    • 77952353946 scopus 로고    scopus 로고
    • Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells
    • Luo Y, Shan G, Guo W et al. Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 2010;6:1000898.
    • (2010) PLoS Genet , vol.6 , pp. 1000898
    • Luo, Y.1    Shan, G.2    Guo, W.3
  • 69
    • 84858749247 scopus 로고    scopus 로고
    • Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: A postmortem brain study
    • Fatemi SH, Folsom TD. Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: A postmortem brain study. Mol Autism 2011;2:6.
    • (2011) Mol Autism , vol.2 , pp. 6
    • Fatemi, S.H.1    Folsom, T.D.2
  • 70
    • 84945242993 scopus 로고    scopus 로고
    • Persistent astrocyte activation in the fragile X mouse cerebellum
    • Pacey LK, Guan S, Tharmalingam S et al. Persistent astrocyte activation in the fragile X mouse cerebellum. Brain Behav 2015;5:e00400.
    • (2015) Brain Behav , vol.5
    • Pacey, L.K.1    Guan, S.2    Tharmalingam, S.3
  • 71
    • 84961793507 scopus 로고    scopus 로고
    • Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes
    • Jacobs S, Cheng C, Doering LC. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes. Neuroscience 2016;324:202–217.
    • (2016) Neuroscience , vol.324 , pp. 202-217
    • Jacobs, S.1    Cheng, C.2    Doering, L.C.3
  • 72
    • 63249110387 scopus 로고    scopus 로고
    • Translational regulation of the human achaete-scute homologue-1 by Fragile X mental retardation protein
    • Fähling M, Mrowka R, Steege A et al. Translational regulation of the human achaete-scute homologue-1 by Fragile X mental retardation protein. J Biol Chem 2009;284:4255–4266.
    • (2009) J Biol Chem , vol.284 , pp. 4255-4266
    • Fähling, M.1    Mrowka, R.2    Steege, A.3
  • 73
    • 0034051923 scopus 로고    scopus 로고
    • Generation of neurons by transient expression of neural bHLH proteins in mammalian cells
    • Farah MH, Olson JM, Sucic HB et al. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 2000;127:693–702.
    • (2000) Development , vol.127 , pp. 693-702
    • Farah, M.H.1    Olson, J.M.2    Sucic, H.B.3
  • 74
    • 84890899156 scopus 로고    scopus 로고
    • Identification of transcription factors for lineage-specific ESCs differentiation
    • Yamamizu K, Piao Y, Sharov AA et al. Identification of transcription factors for lineage-specific ESCs differentiation. Stem Cell Rep 2013;1:545–559.
    • (2013) Stem Cell Rep , vol.1 , pp. 545-559
    • Yamamizu, K.1    Piao, Y.2    Sharov, A.A.3
  • 75
    • 79955676827 scopus 로고    scopus 로고
    • A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets
    • Castro DS, Martynoga B, Parras C et al. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 2011;25:930–945.
    • (2011) Genes Dev , vol.25 , pp. 930-945
    • Castro, D.S.1    Martynoga, B.2    Parras, C.3
  • 76
    • 80055044964 scopus 로고    scopus 로고
    • Reversal of Fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice
    • Westmark CJ, Westmark PR, O’riordan KJ et al. Reversal of Fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice. PLoS One 2011;6:e26549.
    • (2011) PLoS One , vol.6
    • Westmark, C.J.1    Westmark, P.R.2    O’riordan, K.J.3
  • 77
    • 30344457896 scopus 로고    scopus 로고
    • Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration
    • Kawauchi T, Chihama K, Nabeshima Y et al. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol 2006;8:17–26.
    • (2006) Nat Cell Biol , vol.8 , pp. 17-26
    • Kawauchi, T.1    Chihama, K.2    Nabeshima, Y.3
  • 78
    • 84874206003 scopus 로고    scopus 로고
    • Extra-cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders
    • Kawauchi T, Shikanai M, Kosodo Y. Extra-cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders. Genes Cells 2013;18:176–194.
    • (2013) Genes Cells , vol.18 , pp. 176-194
    • Kawauchi, T.1    Shikanai, M.2    Kosodo, Y.3
  • 79
    • 77956503101 scopus 로고    scopus 로고
    • The transcription factor Cux1 regulates dendritic morphology of cortical pyramidal neurons
    • Li N, Zhao CT, Wang Y et al. The transcription factor Cux1 regulates dendritic morphology of cortical pyramidal neurons. PLoS One 2010;5:10596.
    • (2010) PLoS One , vol.5
    • Li, N.1    Zhao, C.T.2    Wang, Y.3
  • 80
    • 0034661746 scopus 로고    scopus 로고
    • Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons
    • Nakayama AY, Harms MB, Luo L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 2000;20:5329–5338.
    • (2000) J Neurosci , vol.20 , pp. 5329-5338
    • Nakayama, A.Y.1    Harms, M.B.2    Luo, L.3
  • 81
    • 84858116752 scopus 로고    scopus 로고
    • Regulation of the actin cytoskeleton in dendritic spines
    • Penzes P, Rafalovich I. Regulation of the actin cytoskeleton in dendritic spines. Adv Exp Med Biol 2012;970:81–95.
    • (2012) Adv Exp Med Biol , vol.970 , pp. 81-95
    • Penzes, P.1    Rafalovich, I.2
  • 82
    • 84922241514 scopus 로고    scopus 로고
    • The interdependence of the Rho GTPases and apicobasal cell polarity
    • Mack NA, Georgiou M. The interdependence of the Rho GTPases and apicobasal cell polarity. Small GTPases 2014;5:10.
    • (2014) Small GTPases , vol.5 , pp. 10
    • Mack, N.A.1    Georgiou, M.2
  • 83
    • 84903367135 scopus 로고    scopus 로고
    • Translational regulation of NeuroD1 expression by FMRP: Involvement in glutamatergic neuronal differentiation of cultured rat primary neural progenitor cells
    • Jeon SJ, Kim JW, Kim KC et al. Translational regulation of NeuroD1 expression by FMRP: Involvement in glutamatergic neuronal differentiation of cultured rat primary neural progenitor cells. Cell Mol Neurobiol 2014;34:297–305.
    • (2014) Cell Mol Neurobiol , vol.34 , pp. 297-305
    • Jeon, S.J.1    Kim, J.W.2    Kim, K.C.3
  • 84
    • 3042647610 scopus 로고    scopus 로고
    • The mGluR theory of Fragile X mental retardation
    • Bear MF, Huber KM, Warren ST. The mGluR theory of Fragile X mental retardation. Trends Neurosci 2004;27:370–377.
    • (2004) Trends Neurosci , vol.27 , pp. 370-377
    • Bear, M.F.1    Huber, K.M.2    Warren, S.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.