메뉴 건너뛰기




Volumn 63, Issue 12, 2016, Pages 2488-2496

An Information-Theoretic Framework to Map the Spatiotemporal Dynamics of the Scalp Electroencephalogram

Author keywords

Causal connectivity; complex dynamics; EEG propagation; entropy estimation; multivariate time series analysis; transfer entropy (TE); volume conduction

Indexed keywords

DYNAMICS; ELECTROPHYSIOLOGY; ENTROPY; INFORMATION THEORY; TIME SERIES ANALYSIS;

EID: 84999218653     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2016.2569823     Document Type: Article
Times cited : (25)

References (47)
  • 1
    • 0033663250 scopus 로고    scopus 로고
    • Complexity analysis of spontaneous EEG
    • J. Bhattacharya, Complexity analysis of spontaneous EEG, Acta Neurobiol. Exp., vol. 60, no. 4, pp. 495-501, 2000.
    • (2000) Acta Neurobiol. Exp. , vol.60 , Issue.4 , pp. 495-501
    • Bhattacharya, J.1
  • 2
    • 0035200464 scopus 로고    scopus 로고
    • EEG complexity as a measure of depth of anesthesia for patients
    • Dec.
    • X. S. Zhang, et al., EEG complexity as a measure of depth of anesthesia for patients, IEEE Trans. Biomed. Eng., vol. 48, no. 12, pp. 1424-1433, Dec. 2001.
    • (2001) IEEE Trans. Biomed. Eng. , vol.48 , Issue.12 , pp. 1424-1433
    • Zhang, X.S.1
  • 3
    • 79953319175 scopus 로고    scopus 로고
    • K-Nearest neighbour local linear prediction of scalp EEG activity during intermittent photic stimulation
    • S. Erla, et al., k-Nearest neighbour local linear prediction of scalp EEG activity during intermittent photic stimulation, Med. Eng. Phys., vol. 33, no. 4, pp. 504-512, 2011.
    • (2011) Med. Eng. Phys. , vol.33 , Issue.4 , pp. 504-512
    • Erla, S.1
  • 4
    • 84933673943 scopus 로고    scopus 로고
    • Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: A multiscale entropy approach
    • Feb. 26
    • R. Okazaki, et al., Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: A multiscale entropy approach, Front. Hum. Neurosci., 2015 Feb. 26;9:106. doi: 10.3389/fnhum. 2015.00106
    • (2015) Front. Hum. Neurosci. , vol.9 , pp. 106
    • Okazaki, R.1
  • 5
    • 82955248152 scopus 로고    scopus 로고
    • Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG
    • V. Sakkalis, Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG, Comput. Biol. Med., vol. 41, no. 12, pp. 1110-1117, 2011.
    • (2011) Comput. Biol. Med. , vol.41 , Issue.12 , pp. 1110-1117
    • Sakkalis, V.1
  • 6
    • 79957978757 scopus 로고    scopus 로고
    • Causality analysis of neural connectivity: Critical examination of existing methods advances of new methods
    • Jun.
    • S. Q. Hu, et al., Causality analysis of neural connectivity: Critical examination of existing methods, advances of new methods, IEEE Trans. Neural Netw., vol. 22, no. 6, pp. 829-844, Jun. 2011.
    • (2011) IEEE Trans Neural Netw. , vol.22 , Issue.6 , pp. 829-844
    • Hu, S.Q.1
  • 7
    • 84862289308 scopus 로고    scopus 로고
    • Measuring connectivity in linear multivariate processes: Definitions, interpretation, practical analysis
    • L. Faes, et al., Measuring connectivity in linear multivariate processes: Definitions, interpretation, practical analysis, Comput. Math. Methods Med., vol. 2012, 2012, Art. no. 140513.
    • (2012) Comput. Math. Methods Med. , vol.2012
    • Faes, L.1
  • 8
    • 84890962645 scopus 로고    scopus 로고
    • The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference
    • L. Barnett, A. K. Seth, The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference, J. Neurosci. Methods, vol. 223, pp. 50-68, 2014.
    • (2014) J. Neurosci. Methods , vol.223 , pp. 50-68
    • Barnett, L.1    Seth, A.K.2
  • 9
    • 84949920880 scopus 로고    scopus 로고
    • Wiener-Granger causality in network physiology with applications to cardiovascular control, neuroscience
    • Feb.
    • A. Porta, L. Faes, Wiener-Granger causality in network physiology with applications to cardiovascular control, neuroscience, Proc. IEEE, vol. 104, no. 2, pp. 282-309, Feb. 2016.
    • (2016) Proc IEEE , vol.104 , Issue.2 , pp. 282-309
    • Porta, A.1    Faes, L.2
  • 10
    • 0031106343 scopus 로고    scopus 로고
    • Topographic analysis of coherence, propagation of EEG activity during sleep, wakefulness
    • M. Kaminski, et al., Topographic analysis of coherence, propagation of EEG activity during sleep, wakefulness, Electroencephalogr. Clin. Neurophysiol., vol. 102, no. 3, pp. 216-227, 1997.
    • (1997) Electroencephalogr. Clin. Neurophysiol. , vol.102 , Issue.3 , pp. 216-227
    • Kaminski, M.1
  • 11
    • 4143086938 scopus 로고    scopus 로고
    • Determination of EEG activity propagation: Pair-wise versus multichannel estimate
    • Sep.
    • R. Kus, et al., Determination of EEG activity propagation: Pair-wise versus multichannel estimate, IEEE Trans. Biomed. Eng., vol. 51, no. 9, pp. 1501-1510, Sep. 2004.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.9 , pp. 1501-1510
    • Kus, R.1
  • 12
    • 33845914363 scopus 로고    scopus 로고
    • Causal influences in the human brain during face discrimination: A short-window directed transfer function approach
    • Dec.
    • M. G. Philiastides, P. Sajda, Causal influences in the human brain during face discrimination: A short-window directed transfer function approach, IEEE Trans. Biomed. Eng, vol. 53, no. 12 Pt 2, pp. 2602-2605, Dec. 2006.
    • (2006) IEEE Trans. Biomed. Eng , vol.53 , Issue.12 , pp. 2602-2605
    • Philiastides, M.G.1    Sajda, P.2
  • 13
    • 33846907845 scopus 로고    scopus 로고
    • Comparison of different cortical connectivity estimators for high-resolution EEG recordings
    • L. Astolfi, et al., Comparison of different cortical connectivity estimators for high-resolution EEG recordings, Hum. Brain Mapping, vol. 28, no. 2, pp. 143-157, 2007.
    • (2007) Hum. Brain Mapping , vol.28 , Issue.2 , pp. 143-157
    • Astolfi, L.1
  • 14
    • 77954539836 scopus 로고    scopus 로고
    • Transmission of brain activity during cognitive task
    • K. Blinowska, et al., Transmission of brain activity during cognitive task, Brain Topography, vol. 23, no. 2, pp. 205-213, 2010.
    • (2010) Brain Topography , vol.23 , Issue.2 , pp. 205-213
    • Blinowska, K.1
  • 15
    • 84924486040 scopus 로고    scopus 로고
    • Granger causality analysis reveals distinct spatiotemporal connectivity patterns in motor, perceptual visuo-spatialworking memory
    • F. Protopapa, et al., Granger causality analysis reveals distinct spatiotemporal connectivity patterns in motor, perceptual visuo-spatialworking memory, Front. Comput. Neurosci., vol. 8, 2014, Art. no. 00146.
    • (2014) Front. Comput. Neurosci. , vol.8
    • Protopapa, F.1
  • 16
    • 0026285112 scopus 로고
    • Nonlinear, linear forecasting of the EEG time-series
    • K. J. Blinowska, M. Malinowski, Nonlinear, linear forecasting of the EEG time-series, Biol. Cybern., vol. 66, no. 2, pp. 159-165, 1991.
    • (1991) Biol. Cybern. , vol.66 , Issue.2 , pp. 159-165
    • Blinowska, K.J.1    Malinowski, M.2
  • 17
    • 0031118501 scopus 로고    scopus 로고
    • Nonlinear considerations inEEGsignal classification
    • Apr.
    • N. Hazarika, et al., Nonlinear considerations inEEGsignal classification, IEEE Trans. Signal Process., vol. 45, no. 4, pp. 829-836, Apr. 1997.
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.4 , pp. 829-836
    • Hazarika, N.1
  • 18
    • 24644505364 scopus 로고    scopus 로고
    • Nonlinear dynamical analysis of EEG, MEG: Review of an emerging field
    • C. J. Stam, Nonlinear dynamical analysis of EEG, MEG: Review of an emerging field, Clin. Neurophysiol., vol. 116, no. 10, pp. 2266-2301, 2005.
    • (2005) Clin. Neurophysiol. , vol.116 , Issue.10 , pp. 2266-2301
    • Stam, C.J.1
  • 19
    • 77956079564 scopus 로고    scopus 로고
    • Nonlinear connectivity by Granger causality
    • D. Marinazzo, et al., Nonlinear connectivity by Granger causality, Neuroimage, vol. 58, pp. 330-338, 2011.
    • (2011) Neuroimage , vol.58 , pp. 330-338
    • Marinazzo, D.1
  • 20
    • 4444355027 scopus 로고    scopus 로고
    • Identifying true brain interaction from EEG data using the imaginary part of coherency
    • G. Nolte, et al., Identifying true brain interaction from EEG data using the imaginary part of coherency, Clin. Neurophysiol., vol. 115, no. 10, pp. 2292-2307, 2004.
    • (2004) Clin. Neurophysiol. , vol.115 , Issue.10 , pp. 2292-2307
    • Nolte, G.1
  • 21
    • 54149104960 scopus 로고    scopus 로고
    • Measuring directional coupling between EEG sources
    • G. Gomez-Herrero, et al., Measuring directional coupling between EEG sources, Neuroimage, vol. 43, no. 3, pp. 497-508, 2008.
    • (2008) Neuroimage , vol.43 , Issue.3 , pp. 497-508
    • Gomez-Herrero, G.1
  • 22
    • 79953018689 scopus 로고    scopus 로고
    • Localizing, estimating causal relations of interacting brain rhythms
    • Nov. 22
    • G. Nolte, K. R. Muller, Localizing, estimating causal relations of interacting brain rhythms, Front. Hum. Neurosci. 2010 Nov. 22;4:209. doi: 10.3389/fnhum.2010.00209
    • (2010) Front. Hum. Neurosci. , vol.4 , pp. 209
    • Nolte, G.1    Muller, K.R.2
  • 23
    • 77954646035 scopus 로고    scopus 로고
    • Modeling sparse connectivity between underlying brain sources for EEG/MEG
    • Aug.
    • S. Haufe, et al., Modeling sparse connectivity between underlying brain sources for EEG/MEG, IEEE Trans. Biomed. Eng., vol. 57, no. 8, pp. 1954-1963, Aug. 2010.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.8 , pp. 1954-1963
    • Haufe, S.1
  • 24
    • 84867314481 scopus 로고    scopus 로고
    • A critical assessment of connectivity measures for EEG data: A simulation study
    • S. Haufe, et al., A critical assessment of connectivity measures for EEG data: A simulation study, Neuroimage, vol. 64, pp. 120-133, 2013.
    • (2013) Neuroimage , vol.64 , pp. 120-133
    • Haufe, S.1
  • 26
    • 84901769257 scopus 로고    scopus 로고
    • Conditional entropy-based evaluation of information dynamics in physiological systems
    • R. Vicente, M.Wibral, J. T. Lizier, Eds. Berlin, Germany: Springer-Verlag
    • L. Faes, A. Porta, Conditional entropy-based evaluation of information dynamics in physiological systems, in Directed Information Measures in Neuroscience, R. Vicente, M.Wibral, J. T. Lizier, Eds. Berlin, Germany: Springer-Verlag, 2014, pp. 61-86.
    • (2014) Directed Information Measures in Neuroscience , pp. 61-86
    • Faes, L.1    Porta, A.2
  • 27
    • 84893355380 scopus 로고    scopus 로고
    • Local active information storage as a tool to understand distributed neural information processing
    • Jan. 28
    • M.Wibral, et al., Local active information storage as a tool to understand distributed neural information processing, Front. Neuroinformat. 2014 Jan. 28;8:1. doi: 10.3389/fninf.2014.00001
    • (2014) Front. Neuroinformat. , vol.8 , pp. 1
    • Wibral, M.1
  • 28
    • 79952282160 scopus 로고    scopus 로고
    • Transfer entropy-A model-free measure of effective connectivity for the neurosciences
    • R. Vicente, et al., Transfer entropy-A model-free measure of effective connectivity for the neurosciences, J. Comput. Neurosci., vol. 30, no. 1, pp. 45-67, 2011.
    • (2011) J. Comput. Neurosci. , vol.30 , Issue.1 , pp. 45-67
    • Vicente, R.1
  • 29
    • 84924787540 scopus 로고    scopus 로고
    • Estimating the decomposition of predictive information in multivariate systems
    • L. Faes, et al., Estimating the decomposition of predictive information in multivariate systems, Phys. Rev. E, vol. 91, no. 3, 2015, Art. no. 032904.
    • (2015) Phys. Rev. e , vol.91 , Issue.3
    • Faes, L.1
  • 30
    • 84873185183 scopus 로고    scopus 로고
    • Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series
    • L. Faes, et al., Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series, Entropy, vol. 15, no. 1, pp. 198-219, 2013.
    • (2013) Entropy , vol.15 , Issue.1 , pp. 198-219
    • Faes, L.1
  • 31
    • 80055053768 scopus 로고    scopus 로고
    • Non-stationarities significantly distort short-term spectral, symbolic, entropy heart rate variability indices
    • V. Magagnin, et al., Non-stationarities significantly distort short-term spectral, symbolic, entropy heart rate variability indices, Physiol. Meas., vol. 32, no. 11, pp. 1775-1786, 2011.
    • (2011) Physiol. Meas. , vol.32 , Issue.11 , pp. 1775-1786
    • Magagnin, V.1
  • 32
    • 84921814437 scopus 로고    scopus 로고
    • Information decomposition in bivariate systems: Theory, application to cardiorespiratory dynamics
    • L. Faes, et al., Information decomposition in bivariate systems: Theory, application to cardiorespiratory dynamics, Entropy, vol. 17, no. 1, pp. 277-303, 2015.
    • (2015) Entropy , vol.17 , Issue.1 , pp. 277-303
    • Faes, L.1
  • 33
    • 84953308511 scopus 로고    scopus 로고
    • Algorithms for the inference of causality in dynamic processes: Application to cardiovascular, cerebrovascular variability, in Proc
    • L. Faes, et al., Algorithms for the inference of causality in dynamic processes: Application to cardiovascular, cerebrovascular variability, in Proc. IEEE 37th Int. Conf. Eng. Med. Biol. Soc., 2015, pp. 1789-1792.
    • (2015) IEEE 37th Int. Conf. Eng. Med. Biol. Soc. , pp. 1789-1792
    • Faes, L.1
  • 35
    • 84947557375 scopus 로고    scopus 로고
    • Identifying changes in EEG information transfer during drowsy driving by transfer entropy
    • Oct. 23
    • C. S. Huang, et al., Identifying changes in EEG information transfer during drowsy driving by transfer entropy, Front. Hum. Neurosci. 2015 Oct. 23;9:570. doi: 10.3389/fnhum.2015.00570
    • (2015) Front. Hum. Neurosci. , vol.9 , pp. 570
    • Huang, C.S.1
  • 36
    • 0001263361 scopus 로고
    • Approximated entropy (ApEn) as a complexity measure
    • S. M. Pincus, Approximated entropy (ApEn) as a complexity measure, Chaos, vol. 5, pp. 110-117, 1995.
    • (1995) Chaos , vol.5 , pp. 110-117
    • Pincus, S.M.1
  • 37
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy, sample entropy
    • J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy, sample entropy, Amer. J. Physiol. Heart Circ. Physiol., vol. 278, no. 6, 2000, Art. no. H2039-H2049.
    • (2000) Amer. J. Physiol. Heart Circ. Physiol. , vol.278 , Issue.6
    • Richman, J.S.1    Moorman, J.R.2
  • 38
    • 33846364903 scopus 로고    scopus 로고
    • Complexity, nonlinearity in short-term heart period variability: Comparison of methods based on local nonlinear prediction
    • Jan.
    • A. Porta, et al., Complexity, nonlinearity in short-term heart period variability: Comparison of methods based on local nonlinear prediction, IEEE Trans. Biomed. Eng., vol. 54, no. 1, pp. 94-106, Jan. 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.1 , pp. 94-106
    • Porta, A.1
  • 39
    • 17044382265 scopus 로고    scopus 로고
    • The physical basis of alpha waves in the electroencephalogram the origin of the "berger effect
    • K. Kirschfeld, The physical basis of alpha waves in the electroencephalogram, the origin of the "Berger effect, Biol. Cybern., vol. 92, no. 3, pp. 177-185, 2005.
    • (2005) Biol. Cybern. , vol.92 , Issue.3 , pp. 177-185
    • Kirschfeld, K.1
  • 40
    • 32544458362 scopus 로고    scopus 로고
    • Sources of cortical rhythms in adults during physiological aging: A multicentric EEG study
    • C. Babiloni, et al., Sources of cortical rhythms in adults during physiological aging: A multicentric EEG study, Hum. Brain Mapping, vol. 27, no. 2, pp. 162-172, 2006.
    • (2006) Hum. Brain Mapping , vol.27 , Issue.2 , pp. 162-172
    • Babiloni, C.1
  • 41
    • 84880544395 scopus 로고    scopus 로고
    • A framework for assessing frequency domain causality in physiological time series with instantaneous effects
    • L. Faes, et al., A framework for assessing frequency domain causality in physiological time series with instantaneous effects, Philos. Trans. A Math. Phys. Eng. Sci., vol. 371, no. 1997, 2013, Art. no. 20110618.
    • (2013) Philos. Trans. A Math. Phys. Eng. Sci. , vol.371 , Issue.1997
    • Faes, L.1
  • 42
    • 0016125192 scopus 로고
    • Wavelike properties of the alpha rhythm
    • Nov.
    • P. L. Nunez, Wavelike properties of the alpha rhythm, IEEE Trans. Biomed. Eng., vol. BME-21, no. 6, pp. 473-482, Nov. 1974.
    • (1974) IEEE Trans. Biomed. Eng. , vol.BME-21 , Issue.6 , pp. 473-482
    • Nunez, P.L.1
  • 43
    • 12344281204 scopus 로고    scopus 로고
    • Spatial, temporal structure of phase synchronization of spontaneous alpha EEG activity
    • J. Ito, et al., Spatial, temporal structure of phase synchronization of spontaneous alpha EEG activity, Biol. Cybern., vol. 92, no. 1, pp. 54-60, 2005.
    • (2005) Biol. Cybern. , vol.92 , Issue.1 , pp. 54-60
    • Ito, J.1
  • 44
    • 45249091476 scopus 로고    scopus 로고
    • Robustly estimating the flow direction of information in complex physical systems
    • G. Nolte, et al., Robustly estimating the flow direction of information in complex physical systems, Phys. Rev. Lett., vol. 100, no. 23, 2008, Art. no. 234101.
    • (2008) Phys. Rev. Lett. , vol.100 , Issue.23
    • Nolte, G.1
  • 45
    • 0028881611 scopus 로고
    • Potential flow of alpha-activity in the human electroencephalogram
    • Feb.
    • T. Inouye, et al., Potential flow of alpha-activity in the human electroencephalogram, Neurosci. Lett., vol. 187, no. 1, pp. 29-32, Feb. 1995.
    • (1995) Neurosci. Lett. , vol.187 , Issue.1 , pp. 29-32
    • Inouye, T.1
  • 46
    • 84903696927 scopus 로고    scopus 로고
    • Algorithms of causal inference for the analysis of effective connectivity among brain regions
    • Jul. 2
    • D. Chicharro, S. Panzeri, Algorithms of causal inference for the analysis of effective connectivity among brain regions, Front. Neuroinformat. 2014 Jul. 2;8:64. doi: 10.3389/fninf.2014.00064
    • (2014) Front. Neuroinformat. , vol.8 , pp. 64
    • Chicharro, D.1    Panzeri, S.2
  • 47
    • 84873446677 scopus 로고    scopus 로고
    • Pairwise likelihood ratios for estimation of non-Gaussian structural equation models
    • A. Hyvarinen, S. M. Smith, Pairwise likelihood ratios for estimation of non-Gaussian structural equation models, J. Mach. Learn. Res., vol. 14, pp. 111-152, 2013.
    • (2013) J. Mach. Learn. Res. , vol.14 , pp. 111-152
    • Hyvarinen, A.1    Smith, S.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.