메뉴 건너뛰기




Volumn 41, Issue 12, 2011, Pages 1110-1117

Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG

Author keywords

Alcoholism; Alzheimer's; Autism; Coherence; Effective connectivity; Functional connectivity; Generalized synchronization; Human brain connectivity; Information based techniques; Multivariate times series; Nonlinear synchronization; Partial directed coherence; Phase level value; Phase synchronization; Schizophrenia; Wavelet coherence

Indexed keywords

ALCOHOLISM; ALZHEIMER'S; AUTISM; EFFECTIVE CONNECTIVITY; FUNCTIONAL CONNECTIVITY; GENERALIZED SYNCHRONIZATION; HUMAN BRAIN; INFORMATION BASED TECHNIQUES; NONLINEAR SYNCHRONIZATION; PARTIAL DIRECTED COHERENCE; PHASE LEVELS; PHASE SYNCHRONIZATION; SCHIZOPHRENIA; TIMES SERIES;

EID: 82955248152     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2011.06.020     Document Type: Article
Times cited : (511)

References (76)
  • 1
    • 70350113448 scopus 로고    scopus 로고
    • Modalities, modes, and models in functional neuroimaging
    • Friston K.J. Modalities, modes, and models in functional neuroimaging. Science 2009, 326(5951):399-403.
    • (2009) Science , vol.326 , Issue.5951 , pp. 399-403
    • Friston, K.J.1
  • 2
    • 0042909008 scopus 로고    scopus 로고
    • Competition in the development of nerve connections: a review of models
    • van Ooyen A. Competition in the development of nerve connections: a review of models. Network 2001, 12(1):R1-47.
    • (2001) Network , vol.12 , Issue.1
    • van Ooyen, A.1
  • 3
    • 0036335198 scopus 로고    scopus 로고
    • An investigation of functional and anatomical connectivity using magnetic resonance imaging
    • Koch M.A., Norris D.G., Hund-Georgiadis M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 2002, 16(1):241-250.
    • (2002) NeuroImage , vol.16 , Issue.1 , pp. 241-250
    • Koch, M.A.1    Norris, D.G.2    Hund-Georgiadis, M.3
  • 5
    • 0042738946 scopus 로고    scopus 로고
    • The elusive concept of brain connectivity
    • Horwitz B. The elusive concept of brain connectivity. NeuroImage 2003, 19(2 Pt 1):466-470.
    • (2003) NeuroImage , vol.19 , Issue.2 PART 1 , pp. 466-470
    • Horwitz, B.1
  • 6
    • 0006859083 scopus 로고
    • Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior
    • Adey W.R., Walter D.O., Hendrix C.E. Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. Exp. Neurol. 1961, 3:501-524.
    • (1961) Exp. Neurol. , vol.3 , pp. 501-524
    • Adey, W.R.1    Walter, D.O.2    Hendrix, C.E.3
  • 7
    • 0021985319 scopus 로고
    • Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model
    • Scherg M., Von Cramon D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 1985, 62(1):32-44.
    • (1985) Electroencephalogr. Clin. Neurophysiol. , vol.62 , Issue.1 , pp. 32-44
    • Scherg, M.1    Von Cramon, D.2
  • 8
    • 58149084000 scopus 로고    scopus 로고
    • Review on solving the inverse problem in EEG source analysis
    • Grech R., et al. Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 2008, 5:25.
    • (2008) J. Neuroeng. Rehabil. , vol.5 , pp. 25
    • Grech, R.1
  • 9
    • 77954195285 scopus 로고    scopus 로고
    • Computational and dynamic models in neuroimaging
    • Friston K.J., Dolan R.J. Computational and dynamic models in neuroimaging. NeuroImage 2010, 52(3):752-765.
    • (2010) NeuroImage , vol.52 , Issue.3 , pp. 752-765
    • Friston, K.J.1    Dolan, R.J.2
  • 10
  • 11
    • 67449088995 scopus 로고    scopus 로고
    • Dynamic causal modelling of distributed electromagnetic responses
    • Daunizeau J., Kiebel S., Friston K. Dynamic causal modelling of distributed electromagnetic responses. NeuroImage 2009, 47(2):590-601.
    • (2009) NeuroImage , vol.47 , Issue.2 , pp. 590-601
    • Daunizeau, J.1    Kiebel, S.2    Friston, K.3
  • 12
    • 66449104082 scopus 로고    scopus 로고
    • Dynamic causal modeling for EEG and MEG
    • Kiebel S., et al. Dynamic causal modeling for EEG and MEG. Hum. Brain Mapp. 2009, 30(6):1866-1876.
    • (2009) Hum. Brain Mapp. , vol.30 , Issue.6 , pp. 1866-1876
    • Kiebel, S.1
  • 13
    • 0016138266 scopus 로고
    • Model of brain rhythmic activity. The alpha-rhythm of the thalamus
    • Lopes da Silva F., et al. Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik 1974, 15(1):27-37.
    • (1974) Kybernetik , vol.15 , Issue.1 , pp. 27-37
    • Lopes da Silva, F.1
  • 14
    • 34547839754 scopus 로고    scopus 로고
    • A neural mass model of spectral responses in electrophysiology
    • Moran R., et al. A neural mass model of spectral responses in electrophysiology. NeuroImage 2007, 37(3):706-720.
    • (2007) NeuroImage , vol.37 , Issue.3 , pp. 706-720
    • Moran, R.1
  • 15
    • 0029374946 scopus 로고
    • Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns
    • Jansen B., Rit V. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 1995, 73(4):357-366.
    • (1995) Biol. Cybern. , vol.73 , Issue.4 , pp. 357-366
    • Jansen, B.1    Rit, V.2
  • 16
    • 0019405994 scopus 로고
    • Voltage oscillations in the barnacle giant muscle fiber
    • Morris C., Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981, 35(1):193-213.
    • (1981) Biophys. J. , vol.35 , Issue.1 , pp. 193-213
    • Morris, C.1    Lecar, H.2
  • 17
    • 0036064946 scopus 로고    scopus 로고
    • From single-trial EEG to brain area dynamics
    • Delorme A., et al. From single-trial EEG to brain area dynamics. Neurocomputing 2002, 1057-1064.
    • (2002) Neurocomputing , pp. 1057-1064
    • Delorme, A.1
  • 18
    • 79955005668 scopus 로고    scopus 로고
    • Intertrial coherence and causal interaction among independent EEG components
    • Zervakis M., et al. Intertrial coherence and causal interaction among independent EEG components. J. Neurosc. Meth. 2011, 197(2):302-314.
    • (2011) J. Neurosc. Meth. , vol.197 , Issue.2 , pp. 302-314
    • Zervakis, M.1
  • 19
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 424-438.
    • (1969) Econometrica , pp. 424-438
    • Granger, C.W.J.1
  • 20
    • 84894912254 scopus 로고
    • Measurement of linear dependence and feedback between multiple time series
    • Geweke J. Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 1982, 304-313.
    • (1982) J. Am. Stat. Assoc. , pp. 304-313
    • Geweke, J.1
  • 21
    • 84950949120 scopus 로고
    • Measures of conditional linear dependence and feedback between time series
    • Geweke J.F. Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc. 1984, 907-915.
    • (1984) J. Am. Stat. Assoc. , pp. 907-915
    • Geweke, J.F.1
  • 22
    • 0039890223 scopus 로고    scopus 로고
    • Elimination of third-series effect and defining partial measures of causality
    • Hosoya Y. Elimination of third-series effect and defining partial measures of causality. J. Time Ser. Anal. 2001, 537-554.
    • (2001) J. Time Ser. Anal. , pp. 537-554
    • Hosoya, Y.1
  • 23
    • 0025987253 scopus 로고
    • A new method of the description of the information flow in the brain structures
    • Kaminski M.J., Blinowska K.J. A new method of the description of the information flow in the brain structures. Biol. Cybern. 1991, 65(3):203-210.
    • (1991) Biol. Cybern. , vol.65 , Issue.3 , pp. 203-210
    • Kaminski, M.J.1    Blinowska, K.J.2
  • 24
    • 0032716863 scopus 로고    scopus 로고
    • Using partial directed coherence to describe neuronal ensemble interactions
    • Sameshima K., Baccala L.A. Using partial directed coherence to describe neuronal ensemble interactions. J. Neurosci. Meth. 1999, 94(1):93-103.
    • (1999) J. Neurosci. Meth. , vol.94 , Issue.1 , pp. 93-103
    • Sameshima, K.1    Baccala, L.A.2
  • 25
    • 0035377249 scopus 로고    scopus 로고
    • Partial directed coherence: a new concept in neural structure determination
    • Baccala L.A., Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 2001, 84(6):463-474.
    • (2001) Biol. Cybern. , vol.84 , Issue.6 , pp. 463-474
    • Baccala, L.A.1    Sameshima, K.2
  • 26
    • 77950859932 scopus 로고    scopus 로고
    • Assessment of connectivity patterns from multivariate time series by partial directed coherence
    • Wehling S., et al. Assessment of connectivity patterns from multivariate time series by partial directed coherence. Chaos Complexity Lett. 2007, 413-433.
    • (2007) Chaos Complexity Lett. , pp. 413-433
    • Wehling, S.1
  • 27
    • 47649133672 scopus 로고    scopus 로고
    • Generalized partial directed coherence, in: Proceedings of the 15th International Conference on Digital Signal Processing, Cardiff
    • L. Baccala, K. Sameshima, D.Y. Takahashi, Generalized partial directed coherence, in: Proceedings of the 15th International Conference on Digital Signal Processing, Cardiff, 2007, pp. 16-166.
    • (2007) , pp. 16-166
    • Baccala, L.1    Sameshima, K.2    Takahashi, D.Y.3
  • 28
    • 0000682527 scopus 로고
    • Cross-correlation and autocorrelation studies of electroencephalographic potentials
    • Brazier M., Casby J. Cross-correlation and autocorrelation studies of electroencephalographic potentials. Electroencephalogr. Clin. Neurophysiol. 1952, 4(2):201-211.
    • (1952) Electroencephalogr. Clin. Neurophysiol. , vol.4 , Issue.2 , pp. 201-211
    • Brazier, M.1    Casby, J.2
  • 29
    • 0032704378 scopus 로고    scopus 로고
    • Event-related changes of band power and coherence: methodology and interpretation
    • Pfurtscheller G., Andrew C. Event-related changes of band power and coherence: methodology and interpretation. J. Clin. Neurophysiol. 1999, 16(6):512-519.
    • (1999) J. Clin. Neurophysiol. , vol.16 , Issue.6 , pp. 512-519
    • Pfurtscheller, G.1    Andrew, C.2
  • 31
    • 0034220863 scopus 로고    scopus 로고
    • Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment
    • Ding M., et al. Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol. Cybern. 2000, 83(1):35-45.
    • (2000) Biol. Cybern. , vol.83 , Issue.1 , pp. 35-45
    • Ding, M.1
  • 32
    • 0036063640 scopus 로고    scopus 로고
    • Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence
    • Lachaux J., et al. Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol. Clin. 2002, 32(3):157-174.
    • (2002) Neurophysiol. Clin. , vol.32 , Issue.3 , pp. 157-174
    • Lachaux, J.1
  • 33
    • 33845517995 scopus 로고    scopus 로고
    • Significant EEG features involved in mathematical reasoning: evidence from wavelet analysis
    • Sakkalis V., Zervakis M., Micheloyannis S. Significant EEG features involved in mathematical reasoning: evidence from wavelet analysis. Brain Topogr. 2006, 19(1-2):53-60.
    • (2006) Brain Topogr. , vol.19 , Issue.1-2 , pp. 53-60
    • Sakkalis, V.1    Zervakis, M.2    Micheloyannis, S.3
  • 34
    • 34047119710 scopus 로고    scopus 로고
    • Time-significant wavelet coherence for the evaluation of schizophrenic brain activity using a graph theory approach
    • Sakkalis V., et al. Time-significant wavelet coherence for the evaluation of schizophrenic brain activity using a graph theory approach. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 1:4265-4268.
    • (2006) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.1 , pp. 4265-4268
    • Sakkalis, V.1
  • 35
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 130-148.
    • (1963) J. Atmos. Sci. , pp. 130-148
    • Lorenz, E.N.1
  • 36
    • 0343689904 scopus 로고
    • Synchronization in chaotic systems
    • Pecora L., Carroll T. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64(8):821-824.
    • (1990) Phys. Rev. Lett. , vol.64 , Issue.8 , pp. 821-824
    • Pecora, L.1    Carroll, T.2
  • 37
    • 34250135918 scopus 로고
    • On the interaction of strange attractors
    • Pikovsky A. On the interaction of strange attractors. Z. Phys. B: Condens. Matter. 1984, 149-154.
    • (1984) Z. Phys. B: Condens. Matter. , pp. 149-154
    • Pikovsky, A.1
  • 39
    • 67749145810 scopus 로고    scopus 로고
    • Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm
    • Sakkalis V., et al. Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm. IEEE Trans. Inf. Technol. Biomed. 2009, 13(4):433-441.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.4 , pp. 433-441
    • Sakkalis, V.1
  • 40
    • 0032757697 scopus 로고    scopus 로고
    • Measuring phase synchrony in brain signals
    • Lachaux J., et al. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8(4):194-208.
    • (1999) Hum. Brain Mapp. , vol.8 , Issue.4 , pp. 194-208
    • Lachaux, J.1
  • 42
    • 27844612542 scopus 로고    scopus 로고
    • Nonlinear multivariate analysis of neurophysiological signals
    • Pereda E., Quiroga R., Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 2005, 77(1-2):1-37.
    • (2005) Prog. Neurobiol. , vol.77 , Issue.1-2 , pp. 1-37
    • Pereda, E.1    Quiroga, R.2    Bhattacharya, J.3
  • 43
    • 0034300367 scopus 로고    scopus 로고
    • Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
    • Mormann F., et al. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D: Nonlin. Phenom. 2000, 358-369.
    • (2000) Phys. D: Nonlin. Phenom. , pp. 358-369
    • Mormann, F.1
  • 44
    • 0346401452 scopus 로고    scopus 로고
    • A robust method for detecting interdependences: application to intracranially recorded EEG
    • J. Arnhold, et al., A robust method for detecting interdependences: application to intracranially recorded EEG. Phys. D: Nonlin. Phenom. 134 (1999).
    • (1999) Phys. D: Nonlin. Phenom. , vol.134
    • Arnhold, J.1
  • 45
    • 85035246836 scopus 로고    scopus 로고
    • Performance of different synchronization measures in real data: a case study on electroencephalographic signals
    • Quian Quiroga R., et al. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2002, 65(4 Pt 1):041903.
    • (2002) Phys. Rev. E Stat. Nonlin. Soft Matter Phys. , vol.65 , Issue.4 PART 1 , pp. 041903
    • Quian Quiroga, R.1
  • 46
    • 0346401452 scopus 로고    scopus 로고
    • A robust method for detecting interdependences: application to intracranially recorded EEG
    • Arnhold J., et al. A robust method for detecting interdependences: application to intracranially recorded EEG. Phys. D: Nonlin. Phenom. 1999, 134.
    • (1999) Phys. D: Nonlin. Phenom. , vol.134
    • Arnhold, J.1
  • 48
    • 84928502982 scopus 로고    scopus 로고
    • Linear and Nonlinear Synchronization Analysis and Visualization during Altered States of Consciousness
    • IN-TECH, Vienna, G.R. Naik (Ed.)
    • Sakkalis V., Zervakis M. Linear and Nonlinear Synchronization Analysis and Visualization during Altered States of Consciousness. Recent Advances in Biomedical Engineering 2010, IN-TECH, Vienna. G.R. Naik (Ed.).
    • (2010) Recent Advances in Biomedical Engineering
    • Sakkalis, V.1    Zervakis, M.2
  • 49
    • 0035043372 scopus 로고    scopus 로고
    • Mutual information analysis of the EEG in patients with Alzheimer's disease
    • Jeong J., Gore J.C., Peterson B.S. Mutual information analysis of the EEG in patients with Alzheimer's disease. Clin. Neurophysiol. 2001, 112(5):827-835.
    • (2001) Clin. Neurophysiol. , vol.112 , Issue.5 , pp. 827-835
    • Jeong, J.1    Gore, J.C.2    Peterson, B.S.3
  • 50
    • 0036900045 scopus 로고    scopus 로고
    • EEG in schizophrenic patients: mutual information analysis
    • Na S.H., et al. EEG in schizophrenic patients: mutual information analysis. Clin. Neurophysiol. 2002, 113(12):1954-1960.
    • (2002) Clin. Neurophysiol. , vol.113 , Issue.12 , pp. 1954-1960
    • Na, S.H.1
  • 51
    • 0023384307 scopus 로고
    • Measures of Mutual and Causal Dependence Between Two Time Series
    • IEEE Press Piscataway, NJ, USA
    • Rissanen J., Wax M. Measures of Mutual and Causal Dependence Between Two Time Series. IEEE Transactions on Information Theory 1987, IEEE Press Piscataway, NJ, USA, pp. 598-601.
    • (1987) IEEE Transactions on Information Theory , pp. 598-601
    • Rissanen, J.1    Wax, M.2
  • 52
    • 57649230841 scopus 로고    scopus 로고
    • Dynamic causal models of steady-state responses
    • Moran R., et al. Dynamic causal models of steady-state responses. NeuroImage 2009, 44(3):796-811.
    • (2009) NeuroImage , vol.44 , Issue.3 , pp. 796-811
    • Moran, R.1
  • 53
    • 70450167506 scopus 로고    scopus 로고
    • Finding stationary subspaces in multivariate time series
    • von Bünau P., et al. Finding stationary subspaces in multivariate time series. Phys. Rev. Lett. 2009, 103(21):214101.
    • (2009) Phys. Rev. Lett. , vol.103 , Issue.21 , pp. 214101
    • von Bünau, P.1
  • 54
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike H. A new look at statistical model identification. IEEE Trans. Autom. Contr. 1974, 716-723.
    • (1974) IEEE Trans. Autom. Contr. , pp. 716-723
    • Akaike, H.1
  • 55
    • 0029925526 scopus 로고    scopus 로고
    • Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram
    • Theiler J., Rapp P. Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 1996, 98(3):213-222.
    • (1996) Electroencephalogr. Clin. Neurophysiol. , vol.98 , Issue.3 , pp. 213-222
    • Theiler, J.1    Rapp, P.2
  • 56
    • 45849102361 scopus 로고    scopus 로고
    • Understanding brain connectivity from EEG data by identifying systems composed of interacting sources
    • Marzetti L., Del Gratta C., Nolte G. Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. NeuroImage 2008, 42(1):87-98.
    • (2008) NeuroImage , vol.42 , Issue.1 , pp. 87-98
    • Marzetti, L.1    Del Gratta, C.2    Nolte, G.3
  • 57
    • 54149104960 scopus 로고    scopus 로고
    • Measuring directional coupling between EEG sources
    • Gómez-Herrero G., et al. Measuring directional coupling between EEG sources. NeuroImage 2008, 43(3):497-508.
    • (2008) NeuroImage , vol.43 , Issue.3 , pp. 497-508
    • Gómez-Herrero, G.1
  • 58
    • 61949483143 scopus 로고    scopus 로고
    • Assessment of neural dynamic coupling and causal interactions between independent EEG components from cognitive tasks using linear and nonlinear methods
    • Sakkalis V., et al. Assessment of neural dynamic coupling and causal interactions between independent EEG components from cognitive tasks using linear and nonlinear methods. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 2008:3767-3770.
    • (2008) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.2008 , pp. 3767-3770
    • Sakkalis, V.1
  • 59
    • 4444355027 scopus 로고    scopus 로고
    • Identifying true brain interaction from EEG data using the imaginary part of coherency
    • Nolte G., et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 2004, 115(10):2292-2307.
    • (2004) Clin. Neurophysiol. , vol.115 , Issue.10 , pp. 2292-2307
    • Nolte, G.1
  • 60
    • 79951798478 scopus 로고    scopus 로고
    • Graph analysis and visualization for brain function characterization using EEG data
    • Sakkalis V., Tsiaras V., Tollis I. Graph analysis and visualization for brain function characterization using EEG data. J. Healthcare Eng. 2010, 1(3):435-459.
    • (2010) J. Healthcare Eng. , vol.1 , Issue.3 , pp. 435-459
    • Sakkalis, V.1    Tsiaras, V.2    Tollis, I.3
  • 61
    • 79955017168 scopus 로고    scopus 로고
    • BrainNetVis: an open-access tool to effectively quantify and visualize brain networks
    • Christodoulou E.G., et al. BrainNetVis: an open-access tool to effectively quantify and visualize brain networks. Comput. Intell. Neurosci. 2011, 2011:747290.
    • (2011) Comput. Intell. Neurosci. , vol.2011 , pp. 747290
    • Christodoulou, E.G.1
  • 62
    • 79951790098 scopus 로고    scopus 로고
    • Applied strategies towards EEG/MEG biomarker identification in clinical and cognitive research
    • Sakkalis V. Applied strategies towards EEG/MEG biomarker identification in clinical and cognitive research. Biomark. Med. 2011, 5(1):93-105.
    • (2011) Biomark. Med. , vol.5 , Issue.1 , pp. 93-105
    • Sakkalis, V.1
  • 63
    • 78650516652 scopus 로고    scopus 로고
    • Computational modeling of epileptic activity: from cortical sources to EEG signals
    • Cosandier-Rimélé D., et al. Computational modeling of epileptic activity: from cortical sources to EEG signals. J. Clin. Neurophysiol. 2010, 27(6):465-470.
    • (2010) J. Clin. Neurophysiol. , vol.27 , Issue.6 , pp. 465-470
    • Cosandier-Rimélé, D.1
  • 64
    • 0642341932 scopus 로고    scopus 로고
    • Effects of scopolamine on MEG spectral power and coherence in elderly subjects
    • Osipova D., et al. Effects of scopolamine on MEG spectral power and coherence in elderly subjects. Clin. Neurophysiol. 2003, 114(10):1902-1907.
    • (2003) Clin. Neurophysiol. , vol.114 , Issue.10 , pp. 1902-1907
    • Osipova, D.1
  • 65
    • 70349976267 scopus 로고    scopus 로고
    • A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG
    • Dauwels J., et al. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG. NeuroImage 2010, 49(1):668-693.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 668-693
    • Dauwels, J.1
  • 66
    • 0033035208 scopus 로고    scopus 로고
    • Schizophrenia and the disconnection hypothesis
    • Friston K.J. Schizophrenia and the disconnection hypothesis. Acta Psychiatr. Scand. Suppl. 1999, 395:68-79.
    • (1999) Acta Psychiatr. Scand. Suppl. , vol.395 , pp. 68-79
    • Friston, K.J.1
  • 67
    • 0042237841 scopus 로고    scopus 로고
    • Abnormal neural synchrony in schizophrenia
    • Spencer K.M., et al. Abnormal neural synchrony in schizophrenia. J. Neurosci. 2003, 23(19):7407-7411.
    • (2003) J. Neurosci. , vol.23 , Issue.19 , pp. 7407-7411
    • Spencer, K.M.1
  • 68
    • 0034255745 scopus 로고    scopus 로고
    • Gamma activity in schizophrenia: evidence of impaired network binding?
    • Haig A.R., et al. Gamma activity in schizophrenia: evidence of impaired network binding?. Clin. Neurophysiol. 2000, 111(8):1461-1468.
    • (2000) Clin. Neurophysiol. , vol.111 , Issue.8 , pp. 1461-1468
    • Haig, A.R.1
  • 69
    • 67650908925 scopus 로고    scopus 로고
    • Cognitive fitness of cost-efficient brain functional networks
    • Bassett D.S., et al. Cognitive fitness of cost-efficient brain functional networks. Proc. Natl. Acad. Sci. USA 2009, 106(28):11747-11752.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.28 , pp. 11747-11752
    • Bassett, D.S.1
  • 70
    • 33846923678 scopus 로고    scopus 로고
    • Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry
    • Just M.A., et al. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 2007, 17(4):951-961.
    • (2007) Cereb. Cortex , vol.17 , Issue.4 , pp. 951-961
    • Just, M.A.1
  • 71
    • 78650849171 scopus 로고    scopus 로고
    • Functional connectivity networks in the autistic and healthy brain assessed using Granger causality, in: Engineering in Medicine and Biology Society IEMBS'10 32nd Annual International Conference of the IEEE
    • L. Pollonini, et al., Functional connectivity networks in the autistic and healthy brain assessed using Granger causality, in: Engineering in Medicine and Biology Society IEMBS'10 32nd Annual International Conference of the IEEE, 2010.
    • (2010)
    • Pollonini, L.1
  • 72
    • 54349117219 scopus 로고    scopus 로고
    • Nonlinear analysis of the sleep EEG in children with pervasive developmental disorder
    • Kulisek R., et al. Nonlinear analysis of the sleep EEG in children with pervasive developmental disorder. Neuro Endocrinol. Lett. 2008, 29(4):512-517.
    • (2008) Neuro Endocrinol. Lett. , vol.29 , Issue.4 , pp. 512-517
    • Kulisek, R.1
  • 73
    • 79951778987 scopus 로고    scopus 로고
    • EEG complexity as a biomarker for autism spectrum disorder risk
    • Bosl W., et al. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011, 9:18.
    • (2011) BMC Med. , vol.9 , pp. 18
    • Bosl, W.1
  • 74
    • 0038466016 scopus 로고    scopus 로고
    • EEG phenotype in alcoholism: increased coherence in the depressive subtype
    • Winterer G., et al. EEG phenotype in alcoholism: increased coherence in the depressive subtype. Acta Psychiatr. Scand. 2003, 108(1):51-60.
    • (2003) Acta Psychiatr. Scand. , vol.108 , Issue.1 , pp. 51-60
    • Winterer, G.1
  • 75
    • 33646829296 scopus 로고    scopus 로고
    • Moderate-to-heavy alcohol intake is associated with differences in synchronization of brain activity during rest and mental rehearsal
    • de Bruin E.A., et al. Moderate-to-heavy alcohol intake is associated with differences in synchronization of brain activity during rest and mental rehearsal. Int. J. Psychophysiol. 2006, 60(3):304-314.
    • (2006) Int. J. Psychophysiol. , vol.60 , Issue.3 , pp. 304-314
    • de Bruin, E.A.1
  • 76
    • 57649199608 scopus 로고    scopus 로고
    • Optimal brain network synchrony visualization: application in an alcoholism paradigm
    • Sakkalis V., et al. Optimal brain network synchrony visualization: application in an alcoholism paradigm. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2007:4285-4288.
    • (2007) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.2007 , pp. 4285-4288
    • Sakkalis, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.