메뉴 건너뛰기




Volumn 58, Issue 2, 2011, Pages 330-338

Nonlinear connectivity by Granger causality

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN FUNCTION; BRAIN REGION; CAUSAL MODELING; DYNAMIC CAUSAL MODELING; ELECTROENCEPHALOGRAM; ELECTROMAGNETIC FIELD; FUNCTIONAL MAGNETIC RESONANCE IMAGING; GRANGER CAUSALITY ANALYSIS; HUMAN; INFORMATION PROCESSING; KERNEL METHOD; MOTOR PERFORMANCE; NERVE CELL NETWORK; NEUROIMAGING; NONLINEAR SYSTEM; NOTE; PRIORITY JOURNAL; SIGNAL DETECTION; STATISTICAL ANALYSIS; VISUAL SYSTEM;

EID: 77956079564     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2010.01.099     Document Type: Note
Times cited : (154)

References (84)
  • 1
    • 33645719651 scopus 로고    scopus 로고
    • An invariance property of predictors in kernel-induced hypothesis spaces
    • Ancona N., Stramaglia S. An invariance property of predictors in kernel-induced hypothesis spaces. Neural Comput. 2006, 18:749.
    • (2006) Neural Comput. , vol.18 , pp. 749
    • Ancona, N.1    Stramaglia, S.2
  • 5
    • 0035377249 scopus 로고    scopus 로고
    • Partial directed coherence: a new concept in neural structure determination
    • Baccala L.A., Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 2001, 84:463-474.
    • (2001) Biol. Cybern. , vol.84 , pp. 463-474
    • Baccala, L.A.1    Sameshima, K.2
  • 6
    • 71549116419 scopus 로고    scopus 로고
    • Granger causality and transfer entropy are equivalent for Gaussian variables
    • Barnett L., Barrett A.B., Seth A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009, 103:238701.
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 238701
    • Barnett, L.1    Barrett, A.B.2    Seth, A.K.3
  • 7
    • 0030306096 scopus 로고    scopus 로고
    • A non-parametric approach to non-linear causality testing
    • Bell D., Kay J., Malley J. A non-parametric approach to non-linear causality testing. Econom. Lett. 1996, 51:7-18.
    • (1996) Econom. Lett. , vol.51 , pp. 7-18
    • Bell, D.1    Kay, J.2    Malley, J.3
  • 8
    • 47249083075 scopus 로고    scopus 로고
    • Modeling nonlinear oscillatory systems and diagnostics of coupling between them using chaotic time series analysis: applications in neurophysiology
    • Bezruchko B.P., Ponomarenko V.I., Prokhorov M.D., Smirnov D.A., Tass P.A. Modeling nonlinear oscillatory systems and diagnostics of coupling between them using chaotic time series analysis: applications in neurophysiology. Physics-Uspekhi 2008, 51:304-310.
    • (2008) Physics-Uspekhi , vol.51 , pp. 304-310
    • Bezruchko, B.P.1    Ponomarenko, V.I.2    Prokhorov, M.D.3    Smirnov, D.A.4    Tass, P.A.5
  • 10
    • 0029999731 scopus 로고    scopus 로고
    • Linear systems analysis of functional magnetic resonance imaging in human V1
    • Boynton G.M., Engel S.A., Glover G.H., Heeger D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 1996, 16:4207-4221.
    • (1996) J. Neurosci. , vol.16 , pp. 4207-4221
    • Boynton, G.M.1    Engel, S.A.2    Glover, G.H.3    Heeger, D.J.4
  • 12
    • 6344282409 scopus 로고    scopus 로고
    • 'Dynamic' connectivity in neural systems: theoretical and empirical considerations
    • Breakspear M. "Dynamic" connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2004, 2:205-226.
    • (2004) Neuroinformatics , vol.2 , pp. 205-226
    • Breakspear, M.1
  • 13
    • 80051715130 scopus 로고    scopus 로고
    • Wiener-Granger Causality: A Well-Established Methodology
    • (this issue)
    • Bressler S.E., Seth A.K. Wiener-Granger Causality: A Well-Established Methodology. Neuroimage. 2011, 58:323-329. (this issue).
    • (2011) Neuroimage. , vol.58 , pp. 323-329
    • Bressler, S.E.1    Seth, A.K.2
  • 14
    • 3042795832 scopus 로고    scopus 로고
    • Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality
    • Brovelli A., Ding M., Ledberg A., Chen Y., Nakamura R., Bressler S.L. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:9849-9854.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 9849-9854
    • Brovelli, A.1    Ding, M.2    Ledberg, A.3    Chen, Y.4    Nakamura, R.5    Bressler, S.L.6
  • 15
    • 7044239641 scopus 로고    scopus 로고
    • Modeling the hemodynamic response to brain activation
    • Buxton R.B., Uludag K., Dubowitz D.J., Liu T.T. Modeling the hemodynamic response to brain activation. NeuroImage 2004, 23(Suppl. 1):S220-S233.
    • (2004) NeuroImage , vol.23 , Issue.SUPPL. 1
    • Buxton, R.B.1    Uludag, K.2    Dubowitz, D.J.3    Liu, T.T.4
  • 16
    • 0037446589 scopus 로고    scopus 로고
    • Statistical assessment of nonlinear causality: application to epileptic EEG signals
    • Chavez M., Martinerie J., Le Van Quyen M. Statistical assessment of nonlinear causality: application to epileptic EEG signals. J. Neurosci. Methods 2003, 124:113-128.
    • (2003) J. Neurosci. Methods , vol.124 , pp. 113-128
    • Chavez, M.1    Martinerie, J.2    Le Van Quyen, M.3
  • 17
    • 31344435870 scopus 로고    scopus 로고
    • Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data
    • Chen Y., Bressler S.L., Ding M. Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J. Neurosci. Methods 2006, 150:228-237.
    • (2006) J. Neurosci. Methods , vol.150 , pp. 228-237
    • Chen, Y.1    Bressler, S.L.2    Ding, M.3
  • 18
    • 67651064297 scopus 로고    scopus 로고
    • Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping
    • Chen H., Yang Q., Liao W., Gong Q., Shen S. Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping. NeuroImage 2009, 47:1844-1853.
    • (2009) NeuroImage , vol.47 , pp. 1844-1853
    • Chen, H.1    Yang, Q.2    Liao, W.3    Gong, Q.4    Shen, S.5
  • 19
    • 0037484691 scopus 로고    scopus 로고
    • Comparison of model selection for regression
    • Cherkassky V., Ma Y. Comparison of model selection for regression. Neural Comput. 2003, 15:1691-1714.
    • (2003) Neural Comput. , vol.15 , pp. 1691-1714
    • Cherkassky, V.1    Ma, Y.2
  • 20
    • 80051748187 scopus 로고    scopus 로고
    • Dynamic causal modelling: A critical review of the biophysical and statistical foundations
    • (this issue)
    • Daunizeau J., David O., Stephan K.E. Dynamic causal modelling: A critical review of the biophysical and statistical foundations. Neuroimage. 2011, 58:312-322. (this issue).
    • (2011) Neuroimage. , vol.58 , pp. 312-322
    • Daunizeau, J.1    David, O.2    Stephan, K.E.3
  • 23
    • 1242283941 scopus 로고    scopus 로고
    • EEGLAB: an open source toolbox for analysis of single- trial EEG dynamics including independent component analysis
    • Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single- trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134(1):9-21.
    • (2004) J. Neurosci. Methods , vol.134 , Issue.1 , pp. 9-21
    • Delorme, A.1    Makeig, S.2
  • 25
    • 40749126841 scopus 로고    scopus 로고
    • Estimating Granger causality from Fourier and wavelet transforms of time series data
    • Dhamala M., Rangarajan G., Ding M. Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys. Rev. Lett. 2008, 100:018701.
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 018701
    • Dhamala, M.1    Rangarajan, G.2    Ding, M.3
  • 27
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston K.J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 1994, 2:56-78.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 56-78
    • Friston, K.J.1
  • 28
    • 80051779591 scopus 로고    scopus 로고
    • Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
    • (this issue)
    • Friston K.J. Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage. 2011, 58:303-305. (this issue).
    • (2011) Neuroimage. , vol.58 , pp. 303-305
    • Friston, K.J.1
  • 29
    • 61349120207 scopus 로고    scopus 로고
    • Causal modelling and brain connectivity in functional magnetic resonance imaging
    • Friston K.J. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 2009, 7:e33.
    • (2009) PLoS Biol. , vol.7
    • Friston, K.J.1
  • 30
    • 0034691138 scopus 로고    scopus 로고
    • Attentional modulation of effective connectivity from V2 to V5/MT in humans
    • Friston K.J., Buchel C. Attentional modulation of effective connectivity from V2 to V5/MT in humans. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:7591-7596.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 7591-7596
    • Friston, K.J.1    Buchel, C.2
  • 31
    • 0029984565 scopus 로고    scopus 로고
    • Functional topography: multidimensional scaling and functional connectivity in the brain
    • Friston K.J., Frith C.D., Fletcher P., Liddle P.F., Frackowiak R.S. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb. Cortex 1996, 6:156-164.
    • (1996) Cereb. Cortex , vol.6 , pp. 156-164
    • Friston, K.J.1    Frith, C.D.2    Fletcher, P.3    Liddle, P.F.4    Frackowiak, R.S.5
  • 33
    • 34547852213 scopus 로고    scopus 로고
    • Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method
    • Fujita A., Sato J.R., Garay-Malpartida H.M., Morettin P.A., Sogayar M.C., Ferreira C.E. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 2007, 23:1623-1630.
    • (2007) Bioinformatics , vol.23 , pp. 1623-1630
    • Fujita, A.1    Sato, J.R.2    Garay-Malpartida, H.M.3    Morettin, P.A.4    Sogayar, M.C.5    Ferreira, C.E.6
  • 34
    • 49349088149 scopus 로고    scopus 로고
    • Evaluation of the effective connectivity of the dominant primary motor cortex during bimanual movement using Granger causality
    • Gao Q., Chen H., Gong Q. Evaluation of the effective connectivity of the dominant primary motor cortex during bimanual movement using Granger causality. Neurosci. Lett. 2008, 443:1-6.
    • (2008) Neurosci. Lett. , vol.443 , pp. 1-6
    • Gao, Q.1    Chen, H.2    Gong, Q.3
  • 35
    • 73449105078 scopus 로고    scopus 로고
    • A novel extended Granger causal model approach demonstrates brain hemispheric differences during face recognition learning
    • Ge T., Kendrick K.M., Feng J. A novel extended Granger causal model approach demonstrates brain hemispheric differences during face recognition learning. PLoS Comput. Biol. 2009, 5:e1000570.
    • (2009) PLoS Comput. Biol. , vol.5
    • Ge, T.1    Kendrick, K.M.2    Feng, J.3
  • 36
    • 84950949120 scopus 로고
    • Measures of conditional linear dependence and feedback between time series
    • Geweke J.F. Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc. 1984, 79:709-715.
    • (1984) J. Am. Stat. Assoc. , vol.79 , pp. 709-715
    • Geweke, J.F.1
  • 37
    • 1042301100 scopus 로고    scopus 로고
    • Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping
    • Goebel R., Roebroeck A., Kim D.S., Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn. Reson. Imaging 2003, 21:1251-1261.
    • (2003) Magn. Reson. Imaging , vol.21 , pp. 1251-1261
    • Goebel, R.1    Roebroeck, A.2    Kim, D.S.3    Formisano, E.4
  • 38
    • 33749346329 scopus 로고    scopus 로고
    • Linear and nonlinear causality between signals: methods, examples and neurophysiological applications
    • Gourevitch B., Bouquin-Jeannes R.L., Faucon G. Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol. Cybern. 2006, 95:349-369.
    • (2006) Biol. Cybern. , vol.95 , pp. 349-369
    • Gourevitch, B.1    Bouquin-Jeannes, R.L.2    Faucon, G.3
  • 39
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37:424-438.
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 40
    • 0011046885 scopus 로고
    • Testing for causality: a personal viewpoint
    • Granger C.W.J. Testing for causality: a personal viewpoint. J. Econ. Dyn. Control 1980, 2:1477-1491.
    • (1980) J. Econ. Dyn. Control , vol.2 , pp. 1477-1491
    • Granger, C.W.J.1
  • 41
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Physica D 1983, 9:189-208.
    • (1983) Physica D , vol.9 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 42
    • 44449088854 scopus 로고    scopus 로고
    • Partial Granger causality-eliminating exogenous inputs and latent variables
    • Guo S., Seth A.K., Kendrick K.M., Zhou C., Feng J. Partial Granger causality-eliminating exogenous inputs and latent variables. J. Neurosci. Methods 2008, 172:79-93.
    • (2008) J. Neurosci. Methods , vol.172 , pp. 79-93
    • Guo, S.1    Seth, A.K.2    Kendrick, K.M.3    Zhou, C.4    Feng, J.5
  • 44
    • 0037473234 scopus 로고    scopus 로고
    • The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies
    • Hesse W., Moller E., Arnold M., Schack B. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J. Neurosci. Methods 2003, 124:27-44.
    • (2003) J. Neurosci. Methods , vol.124 , pp. 27-44
    • Hesse, W.1    Moller, E.2    Arnold, M.3    Schack, B.4
  • 45
    • 84993869057 scopus 로고
    • Testing for linear and nonlinear Granger causality in the stock price-volume relation
    • Hiemstra C., Jones J.D. Testing for linear and nonlinear Granger causality in the stock price-volume relation. J. Finance 1994, 49:1639-1664.
    • (1994) J. Finance , vol.49 , pp. 1639-1664
    • Hiemstra, C.1    Jones, J.D.2
  • 47
    • 0025987253 scopus 로고
    • A new method of the description of the information flow in the brain structures
    • Kaminski M.J., Blinowska K.J. A new method of the description of the information flow in the brain structures. Biol. Cybern. 1991, 65:203-210.
    • (1991) Biol. Cybern. , vol.65 , pp. 203-210
    • Kaminski, M.J.1    Blinowska, K.J.2
  • 48
    • 0035433274 scopus 로고    scopus 로고
    • Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance
    • Kaminski M., Ding M., Truccolo W.A., Bressler S.L. Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 2001, 85:145-157.
    • (2001) Biol. Cybern. , vol.85 , pp. 145-157
    • Kaminski, M.1    Ding, M.2    Truccolo, W.A.3    Bressler, S.L.4
  • 50
    • 0037563249 scopus 로고    scopus 로고
    • Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method
    • Korzeniewska A., Manczak M., Kaminski M., Blinowska K.J., Kasicki S. Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J. Neurosci. Methods 2003, 125:195-207.
    • (2003) J. Neurosci. Methods , vol.125 , pp. 195-207
    • Korzeniewska, A.1    Manczak, M.2    Kaminski, M.3    Blinowska, K.J.4    Kasicki, S.5
  • 51
    • 0142025290 scopus 로고    scopus 로고
    • Functional connectivity: studying nonlinear, delayed interactions between BOLD signals
    • Lahaye P.J., Poline J.B., Flandin G., Dodel S., Garnero L. Functional connectivity: studying nonlinear, delayed interactions between BOLD signals. NeuroImage 2003, 20:962-974.
    • (2003) NeuroImage , vol.20 , pp. 962-974
    • Lahaye, P.J.1    Poline, J.B.2    Flandin, G.3    Dodel, S.4    Garnero, L.5
  • 52
    • 73849130962 scopus 로고    scopus 로고
    • Evaluating the effective connectivity of resting state networks using conditional Granger causality
    • Liao W., Mantini D., Zhang Z., Pan Z., Ding J., Gong G., Yang Y., Chen H. Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biol. Cybern. 2009, 102:57-69.
    • (2009) Biol. Cybern. , vol.102 , pp. 57-69
    • Liao, W.1    Mantini, D.2    Zhang, Z.3    Pan, Z.4    Ding, J.5    Gong, G.6    Yang, Y.7    Chen, H.8
  • 53
    • 70350782361 scopus 로고    scopus 로고
    • Kernel Granger causality mapping effective connectivity on fMRI data
    • Liao W., Marinazzo D., Pan Z., Gong Q., Chen H. Kernel Granger causality mapping effective connectivity on fMRI data. IEEE. Trans Med. Imaging 2009, 28:1825-1835.
    • (2009) IEEE. Trans Med. Imaging , vol.28 , pp. 1825-1835
    • Liao, W.1    Marinazzo, D.2    Pan, Z.3    Gong, Q.4    Chen, H.5
  • 54
    • 70649106878 scopus 로고    scopus 로고
    • A nonlinear identification method to study effective connectivity in functional MRI
    • Li X., Marrelec G., Hess R.F., Benali H. A nonlinear identification method to study effective connectivity in functional MRI. Med. Image. Anal. 2010, 14:30-38.
    • (2010) Med. Image. Anal. , vol.14 , pp. 30-38
    • Li, X.1    Marrelec, G.2    Hess, R.F.3    Benali, H.4
  • 55
    • 0035849892 scopus 로고    scopus 로고
    • Neurophysiological investigation of the basis of the fMRI signal
    • Logothetis N.K., Pauls J., Augath M., Trinath T., Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412:150-157.
    • (2001) Nature , vol.412 , pp. 150-157
    • Logothetis, N.K.1    Pauls, J.2    Augath, M.3    Trinath, T.4    Oeltermann, A.5
  • 57
    • 84892292648 scopus 로고    scopus 로고
    • New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
    • Lütkepohl, H., 2005. New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
    • (2005)
    • Lütkepohl, H.1
  • 58
    • 68549133255 scopus 로고    scopus 로고
    • Maximum penalized likelihood kernel regression for fast adaptation
    • Mak B.K., Lai T., Tsang I.W., Kwok J.T. Maximum penalized likelihood kernel regression for fast adaptation. Trans. Audio, Speech Lang. Proc. 2009, 17(7):1372.
    • (2009) Trans. Audio, Speech Lang. Proc. , vol.17 , Issue.7 , pp. 1372
    • Mak, B.K.1    Lai, T.2    Tsang, I.W.3    Kwok, J.T.4
  • 63
    • 34347265293 scopus 로고    scopus 로고
    • Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections
    • Palus M., Vejmelka M. Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2007, 75:056211.
    • (2007) Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. , vol.75 , pp. 056211
    • Palus, M.1    Vejmelka, M.2
  • 65
    • 27844612542 scopus 로고    scopus 로고
    • Nonlinear multivariate analysis of neurophysiological signals
    • Pereda E., Quiroga R.Q., Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 2005, 77:1-37.
    • (2005) Prog. Neurobiol. , vol.77 , pp. 1-37
    • Pereda, E.1    Quiroga, R.Q.2    Bhattacharya, J.3
  • 66
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • Roebroeck A., Formisano E., Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 2005, 25:230-242.
    • (2005) NeuroImage , vol.25 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 67
    • 80051780742 scopus 로고    scopus 로고
    • The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
    • (this issue)
    • Roebroeck A., Formisano E., Goebel R. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage. 2011, 58:296-302. (this issue).
    • (2011) Neuroimage. , vol.58 , pp. 296-302
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 68
    • 33747441407 scopus 로고    scopus 로고
    • A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality
    • Sato J.R., Junior E.A., Takahashi D.Y., de Maria Felix M., Brammer M.J., Morettin P.A. A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality. NeuroImage 2006, 31:187-196.
    • (2006) NeuroImage , vol.31 , pp. 187-196
    • Sato, J.R.1    Junior, E.A.2    Takahashi, D.Y.3    de Maria Felix, M.4    Brammer, M.J.5    Morettin, P.A.6
  • 69
    • 0347064157 scopus 로고    scopus 로고
    • Synergy, redundancy, and independence in population codes
    • Schneidman E., Bialek W., Berry M.J. Synergy, redundancy, and independence in population codes. J. Neurosci. 2003, 23:11539-11553.
    • (2003) J. Neurosci. , vol.23 , pp. 11539-11553
    • Schneidman, E.1    Bialek, W.2    Berry, M.J.3
  • 70
    • 33745595378 scopus 로고    scopus 로고
    • Causal connectivity of evolved neural networks during behavior
    • Seth A.K. Causal connectivity of evolved neural networks during behavior. Network 2005, 16:35-54.
    • (2005) Network , vol.16 , pp. 35-54
    • Seth, A.K.1
  • 72
    • 50449099617 scopus 로고    scopus 로고
    • A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks
    • Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:12569-12574.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 12569-12574
    • Sridharan, D.1    Levitin, D.J.2    Menon, V.3
  • 74
    • 0003355455 scopus 로고    scopus 로고
    • Modeling economic relationships with smooth transition regressions
    • Marcel Dekker, New York, A. Ullah, D.E.A. Giles (Eds.)
    • Teräsvirta T. Modeling economic relationships with smooth transition regressions. Handbook of Applied Economic Statistics 1998, 507-552. Marcel Dekker, New York. A. Ullah, D.E.A. Giles (Eds.).
    • (1998) Handbook of Applied Economic Statistics , pp. 507-552
    • Teräsvirta, T.1
  • 75
    • 59949083745 scopus 로고    scopus 로고
    • Functional connectivity of default mode network components: correlation, anticorrelation, and causality
    • Uddin L.Q., Clare Kelly A.M., Biswal B.B., Xavier Castellanos F., Milham M.P. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain. Mapp. 2009, 30:625-637.
    • (2009) Hum. Brain. Mapp. , vol.30 , pp. 625-637
    • Uddin, L.Q.1    Clare Kelly, A.M.2    Biswal, B.B.3    Xavier Castellanos, F.4    Milham, M.P.5
  • 79
    • 44449155174 scopus 로고    scopus 로고
    • Estimating Granger causality after stimulus onset: a cautionary note
    • Wang X., Chen Y., Ding M. Estimating Granger causality after stimulus onset: a cautionary note. NeuroImage 2008, 41:767-776.
    • (2008) NeuroImage , vol.41 , pp. 767-776
    • Wang, X.1    Chen, Y.2    Ding, M.3
  • 80
    • 2342571383 scopus 로고    scopus 로고
    • Causality and regime inference in a Markow switching VAR
    • Warne A. Causality and regime inference in a Markow switching VAR. Sveriges Riksbank, Stockholm 2000, 118:1-41.
    • (2000) Sveriges Riksbank, Stockholm , vol.118 , pp. 1-41
    • Warne, A.1
  • 81
    • 78650943891 scopus 로고
    • The theory of predicition
    • McGraw-Hill, New York, E.F. Berkenbach (Ed.)
    • Wiener N. The theory of predicition. Modern Mathematics for Engineers 1956, McGraw-Hill, New York. E.F. Berkenbach (Ed.).
    • (1956) Modern Mathematics for Engineers
    • Wiener, N.1
  • 82
    • 57249089017 scopus 로고    scopus 로고
    • Combined functional and causal connectivity analyses of language networks in children: a feasibility study
    • Wilke M., Lidzba K., Krageloh-Mann I. Combined functional and causal connectivity analyses of language networks in children: a feasibility study. Brain Lang. 2009, 108:22-29.
    • (2009) Brain Lang. , vol.108 , pp. 22-29
    • Wilke, M.1    Lidzba, K.2    Krageloh-Mann, I.3
  • 83
    • 67649662225 scopus 로고    scopus 로고
    • Analyzing brain networks with PCA and conditional Granger causality
    • Zhou Z., Chen Y., Ding M., Wright P., Lu Z., Liu Y. Analyzing brain networks with PCA and conditional Granger causality. Hum. Brain Mapp. 2009, 30:2197-2206.
    • (2009) Hum. Brain Mapp. , vol.30 , pp. 2197-2206
    • Zhou, Z.1    Chen, Y.2    Ding, M.3    Wright, P.4    Lu, Z.5    Liu, Y.6
  • 84
    • 68749102230 scopus 로고    scopus 로고
    • Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality
    • Zhou Z., Ding M., Chen Y., Wright P., Lu Z., Liu Y. Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality. Brain Res. 2009, 1289:22-29.
    • (2009) Brain Res. , vol.1289 , pp. 22-29
    • Zhou, Z.1    Ding, M.2    Chen, Y.3    Wright, P.4    Lu, Z.5    Liu, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.