메뉴 건너뛰기




Volumn 10, Issue 8, 1998, Pages 2159-2173

Almost Linear VC-Dimension Bounds for Piecewise Polynomial Networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0013037041     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976698300017016     Document Type: Article
Times cited : (110)

References (24)
  • 1
    • 0003796630 scopus 로고
    • New York: Academic Press
    • Adams, R. A. (1975). Sobolev spaces. New York: Academic Press.
    • (1975) Sobolev Spaces
    • Adams, R.A.1
  • 3
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • Barron, A. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning, 4, 115-133.
    • (1994) Machine Learning , vol.4 , pp. 115-133
    • Barron, A.1
  • 4
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44, 525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 7
    • 0001414599 scopus 로고
    • Nonparametric maximum likelihood estimation by method of sieves
    • Geman, S., & Hwang, C. R. (1982). Nonparametric maximum likelihood estimation by method of sieves. Annals of Statistics, 10(2), 401-414.
    • (1982) Annals of Statistics , vol.10 , Issue.2 , pp. 401-414
    • Geman, S.1    Hwang, C.R.2
  • 8
    • 0029256399 scopus 로고
    • Bounding the VC dimension of concept classes parameterized by real numbers
    • Goldberg, P. W., & Jerrum, M. R. (1995). Bounding the VC dimension of concept classes parameterized by real numbers. Machine Learning, 18, 131-148.
    • (1995) Machine Learning , vol.18 , pp. 131-148
    • Goldberg, P.W.1    Jerrum, M.R.2
  • 9
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100, 78-150.
    • (1992) Information and Computation , vol.100 , pp. 78-150
    • Haussler, D.1
  • 10
    • 0000996139 scopus 로고
    • Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension
    • Haussler, D. (1995). Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension. J. Combinatorial Theory, A 69, 217-232.
    • (1995) J. Combinatorial Theory , vol.A 69 , pp. 217-232
    • Haussler, D.1
  • 12
    • 0031077292 scopus 로고    scopus 로고
    • Polynomial bounds for VC dimension of sigmoidal and general Paffian neural networks
    • Karpinski, M., & Macintyre, A. (1997). Polynomial bounds for VC dimension of sigmoidal and general Paffian neural networks. Journal of Computer and System Science, 54, 169-176.
    • (1997) Journal of Computer and System Science , vol.54 , pp. 169-176
    • Karpinski, M.1    Macintyre, A.2
  • 14
    • 0001556720 scopus 로고    scopus 로고
    • Efficient agnostic learning of neural networks with bounded fan-in
    • Lee, W.-S., Bartlett, P. J., & Williamson, R. C. (1996). Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inf. Theory, 42(6), 2118-2132.
    • (1996) IEEE Trans. Inf. Theory , vol.42 , Issue.6 , pp. 2118-2132
    • Lee, W.-S.1    Bartlett, P.J.2    Williamson, R.C.3
  • 15
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno, M., Lin, V., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6, 861-867.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3    Schocken, S.4
  • 16
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • Lugosi, G., & Zeger, K. (1995). Nonparametric estimation via empirical risk minimization. IEEE Trans. Inf. Theory, 41(3), 677-687.
    • (1995) IEEE Trans. Inf. Theory , vol.41 , Issue.3 , pp. 677-687
    • Lugosi, G.1    Zeger, K.2
  • 17
    • 0039716477 scopus 로고
    • Neural nets with superlinear VC-dimension
    • Maass, W. (1994). Neural nets with superlinear VC-dimension. Neural Computation, 6(5), 877-884.
    • (1994) Neural Computation , vol.6 , Issue.5 , pp. 877-884
    • Maass, W.1
  • 20
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • Mhaskar, H. (1996). Neural networks for optimal approximation of smooth and analytic functions. Neural Computation, 8(1), 164-177.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 164-177
    • Mhaskar, H.1
  • 22
    • 0012942721 scopus 로고
    • Tighter bounds on the VC-dimension of three-layer networks
    • Hillsdale, NJ: Erlbaum
    • Sakurai, A. (1993). Tighter bounds on the VC-dimension of three-layer networks. In World Congress on Neural Networks. Hillsdale, NJ: Erlbaum.
    • (1993) World Congress on Neural Networks
    • Sakurai, A.1
  • 24
    • 84968495010 scopus 로고
    • Lower bounds for approximation by nonlinear manifolds
    • Warren, H. E. (1968). Lower bounds for approximation by nonlinear manifolds. Trans. AMS, 133, 167-178.
    • (1968) Trans. AMS , vol.133 , pp. 167-178
    • Warren, H.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.