-
1
-
-
79958704133
-
An introduction to propensity score methods for reducing the effects of confounding in observational studies
-
Austin, Peter C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 46(3): 399-424, 2011.
-
(2011)
Multivariate Behavioral Research
, vol.46
, Issue.3
, pp. 399-424
-
-
Austin, P.C.1
-
2
-
-
33644851650
-
Doubly robust estimation in missing data and causal inference models
-
Bang, Heejung and Robins, James M. Doubly robust estimation in missing data and causal inference models. Biometrics, 61(4):962-973, 2005.
-
(2005)
Biometrics
, vol.61
, Issue.4
, pp. 962-973
-
-
Bang, H.1
Robins, J.M.2
-
3
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Ben-David, Shai, Blitzer, John, Crammer, Koby, Pereira, Fernando, et al. Analysis of representations for domain adaptation. Advances in neural information processing systems, 19:137, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 137
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
4
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Yoshua, Courville, Aaron, and Vincent, Pierre. Representation learning: A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8): 1798-1828, 2013.
-
(2013)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
5
-
-
80053144086
-
-
arXiv preprint arXiv: 1002.4058
-
Beygelzimer, Alina, Langford, John, Li, Lihong, Reyzin, Lev, and Schapire, Robert E. Contextual bandit algorithms with supervised learning guarantees. arXiv preprint arXiv: 1002.4058, 2010.
-
(2010)
Contextual Bandit Algorithms with Supervised Learning Guarantees
-
-
Beygelzimer, A.1
Langford, J.2
Li, L.3
Reyzin, L.4
Schapire, R.E.5
-
6
-
-
84890014676
-
Counterfactual reasoning and learning systems: The example of computational advertising.
-
Bottou, Leon, Peters, Jonas, Quinonero-Candela, Joaquin, Charles, Denis X, Chickering, D Max, Portugaly, Elon, Ray, Dipankar, Simard, Patrice, and Snelson, Ed. Counterfactual reasoning and learning systems: The example of computational advertising. The Journal of Machine Learning Research, 14(1):3207-3260, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 3207-3260
-
-
Bottou, L.1
Peters, J.2
Quinonero-Candela, J.3
Charles, D.X.4
Chickering, D.M.5
Portugaly, E.6
Ray, D.7
Simard, P.8
Snelson, E.9
-
7
-
-
84885351243
-
Inference on counterfactual distributions
-
Chernozhukov, Victor, Fernandez-Val, Ivan, and Melly, Blaise. Inference on counterfactual distributions. Econometrica, 81(6):2205-2268, 2013.
-
(2013)
Econometrica
, vol.81
, Issue.6
, pp. 2205-2268
-
-
Chernozhukov, V.1
Fernandez-Val, I.2
Melly, B.3
-
9
-
-
84870288271
-
Bart: Bayesian additive regression trees
-
Chipman, Hugh A, George, Edward I, and McCulloch, Robert E. Bart: Bayesian additive regression trees. The Annals of Applied Statistics, pp. 266-298, 2010.
-
(2010)
The Annals of Applied Statistics
, pp. 266-298
-
-
Chipman, H.A.1
George, E.I.2
McCulloch, R.E.3
-
10
-
-
84892371351
-
Domain adaptation and sample bias correction theory and algorithm for regression
-
Cortes, Corinna and Mohri, Mehiyar. Domain adaptation and sample bias correction theory and algorithm for regression. Theoretical Computer Science, 519:103-126, 2014.
-
(2014)
Theoretical Computer Science
, vol.519
, pp. 103-126
-
-
Cortes, C.1
Mohri, M.2
-
14
-
-
84985025231
-
-
arXiv preprint arXiv: 1505.07818
-
Gani, Yaroslav, Ustinova, Evgeniya, Ajakan, Hana, Germain, Pascal, Larochelle, Hugo, Laviolette, Francois, Marchand, Mario, and Lempitsky, Victor. Domain- adversarial training of neural networks. arXiv preprint arXiv: 1505.07818, 2015.
-
(2015)
Domain- Adversarial Training of Neural Networks
-
-
Gani, Y.1
Ustinova, E.2
Ajakan, H.3
Germain, P.4
Larochelle, H.5
Laviolette, F.6
Marchand, M.7
Lempitsky, V.8
-
16
-
-
84859477054
-
A kernel two-sample test
-
March
-
Gretton, Arthur, Borgwardt, Karsten M., Rasch, Malte J., Scholkopf, Bernhard, and Smola, Alexander. A kernel two-sample test. J. Mach. Learn. Res., 13:723-773, March 2012. ISSN1532-4435.
-
(2012)
J. Mach. Learn. Res
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Scholkopf, B.4
Smola, A.5
-
19
-
-
46249131752
-
Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
-
Kang, Joseph DY and Schafer, Joseph L. Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical science, pp. 523-539, 2007.
-
(2007)
Statistical Science
, pp. 523-539
-
-
Kang, J.D.Y.1
Schafer, J.L.2
-
20
-
-
80053456223
-
Doubly robust policy evaluation and learning
-
Langford, John, Li, Lihong, and Dudfk, Miroslav. Doubly robust policy evaluation and learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1097-1104, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 1097-1104
-
-
Langford, J.1
Li, L.2
Dudfk, M.3
-
22
-
-
84998895971
-
-
arXiv preprint arXiv: 1511.00830
-
Louizos, Christos, Swersky, Kevin, Li, Yujia, Welling, Max, and Zemel, Richard. The variational fair auto encoder. arXiv preprint arXiv: 1511.00830, 2015.
-
(2015)
The Variational Fair Auto Encoder
-
-
Louizos, C.1
Swersky, K.2
Li, Y.3
Welling, M.4
Zemel, R.5
-
26
-
-
70349349170
-
-
Cambridge university press
-
Pearl, Judea. Causality. Cambridge university press, 2009.
-
(2009)
Causality
-
-
Pearl, J.1
-
27
-
-
84856039288
-
Invited commentary: Understanding bias amplification
-
Pearl, Judea. Invited commentary: understanding bias amplification. American journal of epidemiology, 174(11): 1223-1227, 2011.
-
(2011)
American Journal of Epidemiology
, vol.174
, Issue.11
, pp. 1223-1227
-
-
Pearl, J.1
-
28
-
-
0017166016
-
Use of the logistic model in retrospective, studies
-
Prentice, Ross. Use of the logistic model in retrospective studies. Biometrics, pp. 599-606, 1976.
-
(1976)
Biometrics
, pp. 599-606
-
-
Prentice, R.1
-
29
-
-
0033847784
-
Marginal structural models and causal inference in epidemiology
-
Robins, James M, Hernan, Miguel Angel, and Brumback, Babette. Marginal structural models and causal inference in epidemiology. Epidemiology, pp. 550-560, 2000.
-
(2000)
Epidemiology
, pp. 550-560
-
-
Robins, J.M.1
Hernan, M.A.2
Brumback, B.3
-
32
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum, Paul R and Rubin, Donald B. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41-55, 1983.
-
(1983)
Biometrika
, vol.70
, Issue.1
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
33
-
-
58149417330
-
Estimating causal effects of treatments in randomized and nonrandomized studies
-
Rubin, Donald B. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5):688, 1974.
-
(1974)
Journal of Educational Psychology
, vol.66
, Issue.5
, pp. 688
-
-
Rubin, D.B.1
-
35
-
-
84867113617
-
On causal and anticausal learning
-
New York, NY, USA, Omnipress
-
Scholkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., and Mooij, J. On causal and anticausal learning. In Proceedings of the 29th International Conference on Machine Learning, pp. 1255-1262, New York, NY, USA, 2012. Omnipress.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning
, pp. 1255-1262
-
-
Scholkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.6
-
36
-
-
85162031443
-
Learning from logged implicit exploration data
-
Strehl, Alex, Langford, John, Li, Lihong, and Kakade, Sham M. Learning from logged implicit exploration data. In Advances in Neural Information Processing Systems, pp. 2217-2225, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 2217-2225
-
-
Strehl, A.1
Langford, J.2
Li, L.3
Kakade, S.M.4
-
38
-
-
84962231719
-
Batch learning from logged bandit feedback through counterfactual risk minimization
-
Swaminathan, Adith and Joachims, Thorsten. Batch learning from logged bandit feedback through counterfactual risk minimization. Journal of Machine Learning Research, 16:1731-1755, 2015.
-
(2015)
Journal of Machine Learning Research
, vol.16
, pp. 1731-1755
-
-
Swaminathan, A.1
Joachims, T.2
-
39
-
-
84919797419
-
A simple method for estimating interactions between a treatment and a large number of covariates
-
Tian, Lu, Alizadeh, Ash A, Gentles, Andrew J, and Tib- shirani, Robert. A simple method for estimating interactions between a treatment and a large number of covariates. Journal of the American Statistical Association, 109(508): 1517-1532, 2014.
-
(2014)
Journal of the American Statistical Association
, vol.109
, Issue.508
, pp. 1517-1532
-
-
Tian, L.1
Alizadeh, A.A.2
Gentles, A.J.3
Tib-Shirani, R.4
-
40
-
-
33847633000
-
Causal effect models for realistic individualized treatment and intention to treat rules
-
van der Laan, Mark J and Petersen, Maya L. Causal effect models for realistic individualized treatment and intention to treat rules. The International Journal ofBiostatistics, 3(1), 2007.
-
(2007)
The International Journal OfBiostatistics
, vol.3
, Issue.1
-
-
Van Der Laan, M.J.1
Petersen, M.L.2
-
42
-
-
84998990165
-
Machine learning for treatment assignment: Improving individualized risk attribution
-
Weiss, Jeremy C, Kuusisto, Finn, Boyd, Kendrick, Lui, Jie, and Page, David C. Machine learning for treatment assignment: Improving individualized risk attribution. American Medical Informatics Association Annual Symposium, 2015.
-
(2015)
American Medical Informatics Association Annual Symposium
-
-
Weiss, J.C.1
Kuusisto, F.2
Boyd, K.3
Lui, J.4
Page, D.C.5
-
43
-
-
84897542525
-
Learning fair representations
-
Zemel, Rich, Wu, Yu, Swersky, Kevin, Pitassi, Toni, and Dwork, Cynthia. Learning fair representations. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 325-333, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, pp. 325-333
-
-
Zemel, R.1
Wu, Y.2
Swersky, K.3
Pitassi, T.4
Dwork, C.5
|