메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages 4407-4418

Learning representations for counterfactual inference

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 84999054172     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (210)

References (43)
  • 1
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity score methods for reducing the effects of confounding in observational studies
    • Austin, Peter C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 46(3): 399-424, 2011.
    • (2011) Multivariate Behavioral Research , vol.46 , Issue.3 , pp. 399-424
    • Austin, P.C.1
  • 2
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang, Heejung and Robins, James M. Doubly robust estimation in missing data and causal inference models. Biometrics, 61(4):962-973, 2005.
    • (2005) Biometrics , vol.61 , Issue.4 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 7
    • 84885351243 scopus 로고    scopus 로고
    • Inference on counterfactual distributions
    • Chernozhukov, Victor, Fernandez-Val, Ivan, and Melly, Blaise. Inference on counterfactual distributions. Econometrica, 81(6):2205-2268, 2013.
    • (2013) Econometrica , vol.81 , Issue.6 , pp. 2205-2268
    • Chernozhukov, V.1    Fernandez-Val, I.2    Melly, B.3
  • 10
    • 84892371351 scopus 로고    scopus 로고
    • Domain adaptation and sample bias correction theory and algorithm for regression
    • Cortes, Corinna and Mohri, Mehiyar. Domain adaptation and sample bias correction theory and algorithm for regression. Theoretical Computer Science, 519:103-126, 2014.
    • (2014) Theoretical Computer Science , vol.519 , pp. 103-126
    • Cortes, C.1    Mohri, M.2
  • 19
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang, Joseph DY and Schafer, Joseph L. Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical science, pp. 523-539, 2007.
    • (2007) Statistical Science , pp. 523-539
    • Kang, J.D.Y.1    Schafer, J.L.2
  • 26
    • 70349349170 scopus 로고    scopus 로고
    • Cambridge university press
    • Pearl, Judea. Causality. Cambridge university press, 2009.
    • (2009) Causality
    • Pearl, J.1
  • 27
    • 84856039288 scopus 로고    scopus 로고
    • Invited commentary: Understanding bias amplification
    • Pearl, Judea. Invited commentary: understanding bias amplification. American journal of epidemiology, 174(11): 1223-1227, 2011.
    • (2011) American Journal of Epidemiology , vol.174 , Issue.11 , pp. 1223-1227
    • Pearl, J.1
  • 28
    • 0017166016 scopus 로고
    • Use of the logistic model in retrospective, studies
    • Prentice, Ross. Use of the logistic model in retrospective studies. Biometrics, pp. 599-606, 1976.
    • (1976) Biometrics , pp. 599-606
    • Prentice, R.1
  • 29
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins, James M, Hernan, Miguel Angel, and Brumback, Babette. Marginal structural models and causal inference in epidemiology. Epidemiology, pp. 550-560, 2000.
    • (2000) Epidemiology , pp. 550-560
    • Robins, J.M.1    Hernan, M.A.2    Brumback, B.3
  • 32
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, Paul R and Rubin, Donald B. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41-55, 1983.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 33
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, Donald B. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5):688, 1974.
    • (1974) Journal of Educational Psychology , vol.66 , Issue.5 , pp. 688
    • Rubin, D.B.1
  • 38
    • 84962231719 scopus 로고    scopus 로고
    • Batch learning from logged bandit feedback through counterfactual risk minimization
    • Swaminathan, Adith and Joachims, Thorsten. Batch learning from logged bandit feedback through counterfactual risk minimization. Journal of Machine Learning Research, 16:1731-1755, 2015.
    • (2015) Journal of Machine Learning Research , vol.16 , pp. 1731-1755
    • Swaminathan, A.1    Joachims, T.2
  • 39
    • 84919797419 scopus 로고    scopus 로고
    • A simple method for estimating interactions between a treatment and a large number of covariates
    • Tian, Lu, Alizadeh, Ash A, Gentles, Andrew J, and Tib- shirani, Robert. A simple method for estimating interactions between a treatment and a large number of covariates. Journal of the American Statistical Association, 109(508): 1517-1532, 2014.
    • (2014) Journal of the American Statistical Association , vol.109 , Issue.508 , pp. 1517-1532
    • Tian, L.1    Alizadeh, A.A.2    Gentles, A.J.3    Tib-Shirani, R.4
  • 40
    • 33847633000 scopus 로고    scopus 로고
    • Causal effect models for realistic individualized treatment and intention to treat rules
    • van der Laan, Mark J and Petersen, Maya L. Causal effect models for realistic individualized treatment and intention to treat rules. The International Journal ofBiostatistics, 3(1), 2007.
    • (2007) The International Journal OfBiostatistics , vol.3 , Issue.1
    • Van Der Laan, M.J.1    Petersen, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.