메뉴 건너뛰기




Volumn 519, Issue , 2014, Pages 103-126

Domain adaptation and sample bias correction theory and algorithm for regression

Author keywords

Domain adaptation; Learning theory; Machine learning; Optimization

Indexed keywords

ADAPTATION ALGORITHMS; ALGORITHM FOR SOLVING; DOMAIN ADAPTATION; HIGH-DIMENSIONAL FEATURE SPACE; LEARNING THEORY; REGULARIZATION ALGORITHMS; REPRODUCING KERNEL HILBERT SPACES; WEIGHTED FEATURES;

EID: 84892371351     PISSN: 03043975     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcs.2013.09.027     Document Type: Article
Times cited : (202)

References (37)
  • 8
    • 80054098743 scopus 로고    scopus 로고
    • Domain adaptation in regression
    • C. Cortes, and M. Mohri Domain adaptation in regression ALT 2011 308 323
    • (2011) ALT , pp. 308-323
    • Cortes, C.1    Mohri, M.2
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 3 1995
    • (1995) Mach. Learn. , vol.20 , Issue.3
    • Cortes, C.1    Vapnik, V.2
  • 18
    • 0029288633 scopus 로고
    • Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models
    • C.J. Legetter, and P.C. Woodland Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models Comput. Speech Lang. 9 2 1995 171 185
    • (1995) Comput. Speech Lang. , vol.9 , Issue.2 , pp. 171-185
    • Legetter, C.J.1    Woodland, P.C.2
  • 19
    • 0039119760 scopus 로고
    • The convex analysis of unitarily invariant matrix functions
    • A.S. Lewis The convex analysis of unitarily invariant matrix functions J. Convex Anal. 2 2 1995 173 183
    • (1995) J. Convex Anal. , vol.2 , Issue.2 , pp. 173-183
    • Lewis, A.S.1
  • 21
    • 0036603236 scopus 로고    scopus 로고
    • Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class
    • A.M. Martínez Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class IEEE Trans. Pattern Anal. 24 6 2002
    • (2002) IEEE Trans. Pattern Anal. , vol.24 , Issue.6
    • Martínez, A.M.1
  • 22
    • 84867880979 scopus 로고    scopus 로고
    • New analysis and algorithm for learning with drifting distributions
    • Lyon, France Lecture Notes in Computer Science Springer Heidelberg, Germany
    • M. Mohri, and A. Muñoz New analysis and algorithm for learning with drifting distributions Proceedings of ALT 2012 Lyon, France Lecture Notes in Computer Science vol. 7568 2012 Springer Heidelberg, Germany 124 138
    • (2012) Proceedings of ALT 2012 , vol.7568 , pp. 124-138
    • Mohri, M.1    Muñoz, A.2
  • 25
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov Smooth minimization of non-smooth functions Math. Program. 103 May 2005 127 152
    • (2005) Math. Program. , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 26
    • 33947732413 scopus 로고    scopus 로고
    • Smoothing technique and its applications in semidefinite optimization
    • Y. Nesterov Smoothing technique and its applications in semidefinite optimization Math. Program. 110 2007 245 259
    • (2007) Math. Program. , vol.110 , pp. 245-259
    • Nesterov, Y.1
  • 28
    • 0001110772 scopus 로고
    • On minimizing the maximum eigenvalue of a symmetric matrix
    • M.L. Overton On minimizing the maximum eigenvalue of a symmetric matrix SIAM J. Matrix Anal. Appl. 9 2 1988
    • (1988) SIAM J. Matrix Anal. Appl. , vol.9 , Issue.2
    • Overton, M.L.1
  • 30
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modeling
    • R. Rosenfeld A maximum entropy approach to adaptive statistical language modeling Comput. Speech Lang. 10 1996 187 228
    • (1996) Comput. Speech Lang. , vol.10 , pp. 187-228
    • Rosenfeld, R.1
  • 32
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira Improving predictive inference under covariate shift by weighting the log-likelihood function J. Stat. Plan. Inference 90 2 2000 227 244
    • (2000) J. Stat. Plan. Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 33
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart On the influence of the kernel on the consistency of support vector machines J. Mach. Learn. Res. 2 2002 67 93
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 37
    • 84867129026 scopus 로고    scopus 로고
    • Analysis of kernel mean matching under covariate shift
    • Y. Yu, and C. Szepesvári Analysis of kernel mean matching under covariate shift ICML 2012
    • (2012) ICML
    • Yu, Y.1    Szepesvári, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.