메뉴 건너뛰기




Volumn 174, Issue 11, 2011, Pages 1223-1227

Invited commentary: Understanding bias amplification

Author keywords

Bias (epidemiology); Confounding factors (epidemiology); Epidemiologic methods; Instrumental variable; Precision; Simulation; Variable selection

Indexed keywords

ASSESSMENT METHOD; COVARIANCE ANALYSIS; EPIDEMIOLOGY; ERROR ANALYSIS; NUMERICAL MODEL; PRECISION;

EID: 84856039288     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwr352     Document Type: Review
Times cited : (153)

References (17)
  • 1
    • 77957553279 scopus 로고    scopus 로고
    • Do instrumental variables belong in propensity scores?
    • Cambridge, MA: National Bureau of Economic Research
    • Bhattacharya J, Vogt W. Do Instrumental Variables Belong in Propensity Scores? (NBER Technical Working Paper no. 343). Cambridge, MA: National Bureau of Economic Research; 2007.
    • (2007) NBER Technical Working Paper No. 343
    • Bhattacharya, J.1    Vogt, W.2
  • 2
    • 77649320613 scopus 로고    scopus 로고
    • East Lansing, MI: Michigan State University;, Accessed July 2010
    • Wooldridge J. Should instrumental variables be used as matching variables? East Lansing, MI: Michigan State University; 2009. (https://www.msu.edu/~ec/faculty/wooldridge/current%20research/treat1r6.pdf). (Accessed July 2010).
    • (2009) Should Instrumental Variables Be Used as Matching variables?
    • Wooldridge, J.1
  • 3
    • 80053137535 scopus 로고    scopus 로고
    • On a class of bias-amplifying variables that endanger effect estimates
    • Corvallis, OR: Association for Uncertainty in Artificial Intelligence;, Accessed September 2011
    • Pearl J. On a class of bias-amplifying variables that endanger effect estimates. In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI 2010). Corvallis, OR: Association for Uncertainty in Artificial Intelligence; 2010:425-432. (http://ftp.cs.ucla.edu/pub/stat-ser/ r356.pdf). (Accessed September 2011).
    • (2010) Proceedings of the Twenty-sixth Conference on Uncertainty in Artificial Intelligence (UAI 2010) , pp. 425-432
    • Pearl, J.1
  • 4
    • 80053281276 scopus 로고    scopus 로고
    • Effects of adjusting for instrumental variables on bias and precision of effect estimates
    • Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J Epidemiol. 2011;174(11):1213-1222.
    • (2011) Am J Epidemiol. , vol.174 , Issue.11 , pp. 1213-1222
    • Myers, J.A.1    Rassen, J.A.2    Gagne, J.J.3
  • 5
    • 82055193049 scopus 로고    scopus 로고
    • Causal diagrams for treatment effect estimation with application to efficient covariate selection
    • In press
    • White H, Lu X. Causal diagrams for treatment effect estimation with application to efficient covariate selection. Rev Econ Stat. In press.
    • Rev Econ Stat
    • White, H.1    Lu, X.2
  • 6
    • 79959558713 scopus 로고    scopus 로고
    • The implications of propensity score variable selection strategies in pharmacoepidemiology: An empirical illustration
    • Patrick AR, Schneeweiss S, Brookhart MA, et al. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration. Pharmacoepidemiol Drug Saf. 2011;20(6):551-559.
    • (2011) Pharmacoepidemiol Drug Saf. , vol.20 , Issue.6 , pp. 551-559
    • Patrick, A.R.1    Schneeweiss, S.2    Brookhart, M.A.3
  • 7
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
    • Hirano K, Imbens G. Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Serv Outcome Res Methodol. 2001;2(3-4):259-278.
    • (2001) Health Serv Outcome Res Methodol. , vol.2 , Issue.3-4 , pp. 259-278
    • Hirano, K.1    Imbens, G.2
  • 8
    • 69949106881 scopus 로고    scopus 로고
    • Author's reply: Should observational studies be designed to allow lack of balance in covariate distributions across treatment groups? [letter]
    • Rubin D. Author's reply: Should observational studies be designed to allow lack of balance in covariate distributions across treatment groups? [letter]. Stat Med. 2009;28(9):1420-1423.
    • (2009) Stat Med. , vol.28 , Issue.9 , pp. 1420-1423
    • Rubin, D.1
  • 9
    • 77649285984 scopus 로고    scopus 로고
    • Technical report R-348. Los Angeles, CA: Department of Computer Science, University of California, Los Angeles;, Accessed May 2009
    • Pearl J. Myth, Confusion, and Science in Causal Analysis. (Technical report R-348). Los Angeles, CA: Department of Computer Science, University of California, Los Angeles; 2009. (http://ftp.cs.ucla.edu/pub/stat-ser/r348.pdf). (Accessed May 2009).
    • (2009) Myth, Confusion, and Science in Causal Analysis
    • Pearl, J.1
  • 11
    • 0021065932 scopus 로고
    • The relative efficiencies of matched and independent sample designs for case-control studies
    • Thomas DC, Greenland S. The relative efficiencies of matched and independent sample designs for case-control studies. J Chronic Dis. 1983;36(10):685-697. (Pubitemid 14246890)
    • (1983) Journal of Chronic Diseases , vol.36 , Issue.10 , pp. 685-697
    • Thomas, D.C.1    Greenland, S.2
  • 12
    • 44649182793 scopus 로고    scopus 로고
    • Discussion of research using propensity-score matching: Comments on 'A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine
    • DOI 10.1002/sim.3245
    • Hill J. Discussion of research using propensity-score matching: comments on 'A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine. Stat Med. 2008;27(12):2055-2061. (Pubitemid 351772302)
    • (2008) Statistics in Medicine , vol.27 , Issue.12 , pp. 2055-2061
    • Hill, J.1
  • 13
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • DOI 10.1002/sim.3150
    • Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med. 2008;27(12):2037-2049. (Pubitemid 351772300)
    • (2008) Statistics in Medicine , vol.27 , Issue.12 , pp. 2037-2049
    • Austin, P.C.1
  • 16
    • 1842533937 scopus 로고    scopus 로고
    • Functional restriction and efficiency in causal inference
    • DOI 10.1162/003465304323023688
    • Hahn J. Functional restriction and efficiency in causal inference. Rev Econ Stat. 2004;86(1):73-76. (Pubitemid 38422767)
    • (2004) Review of Economics and Statistics , vol.86 , Issue.1 , pp. 73-76
    • Hahn, J.1
  • 17
    • 80055052038 scopus 로고    scopus 로고
    • Los Angeles, CA: Department of Computer Science, University of California, Los Angeles;, Accessed September 2011
    • Bareinboim E, Pearl J. Controlling Selection Bias in Causal Inference. Los Angeles, CA: Department of Computer Science, University of California, Los Angeles; 2011. (http://ftp.cs.ucla.edu/pub/stat-ser/r381.pdf). (Accessed September 2011).
    • (2011) Controlling Selection Bias in Causal Inference
    • Bareinboim, E.1    Pearl, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.