메뉴 건너뛰기




Volumn 2, Issue , 2016, Pages 1368-1379

A new PAC-Bayesian perspective on domain adaptation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ECONOMIC AND SOCIAL EFFECTS; LEARNING SYSTEMS; RISK ASSESSMENT;

EID: 84999040133     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (46)

References (49)
  • 2
    • 84864049234 scopus 로고    scopus 로고
    • Analysis of representations for domain adaptation
    • Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. Analysis of representations for domain adaptation. In NIPS, pp. 137-144, 2006.
    • (2006) NIPS , pp. 137-144
    • Ben-David, S.1    Blitzer, J.2    Crammer, K.3    Pereira, F.4
  • 4
    • 84885824646 scopus 로고    scopus 로고
    • Domain adaptation-can quantity compensate for quality?
    • Ben-David, S., Shalev-Shwartz, S., and Urner, R. Domain adaptation-can quantity compensate for quality? In ISAIM, 2012.
    • (2012) ISAIM
    • Ben-David, S.1    Shalev-Shwartz, S.2    Urner, R.3
  • 5
    • 84969939978 scopus 로고    scopus 로고
    • Active nearest neighbors in changing environments
    • Berlind, C. and Urner, R. Active nearest neighbors in changing environments. In ICML, pp. 1870-1879, 2015.
    • (2015) ICML , pp. 1870-1879
    • Berlind, C.1    Urner, R.2
  • 7
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • Blitzer, J., McDonald, R., and Pereira, F. Domain adaptation with structural correspondence learning. In EMNLP, pp. 120-128, 2006.
    • (2006) EMNLP , pp. 120-128
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 8
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A DASVM classification technique and a circular validation strategy
    • Bruzzone, L. and Marconcini, M. Domain adaptation problems: A DASVM classification technique and a circular validation strategy. IEEE Trans. Pattern Anal. Mach. Inrel., 32(5):770-787, 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Inrel. , vol.32 , Issue.5 , pp. 770-787
    • Bruzzone, L.1    Marconcini, M.2
  • 10
    • 85162384576 scopus 로고    scopus 로고
    • Co-training for domain adaptation
    • Chen, M., Weinberger, K. Q., and Blitzer, J. Co-training for domain adaptation. In NIPS, pp. 2456-2464, 2011.
    • (2011) NIPS , pp. 2456-2464
    • Chen, M.1    Weinberger, K.Q.2    Blitzer, J.3
  • 11
    • 84867129067 scopus 로고    scopus 로고
    • Marginalized denoising autoencoders for domain adaptation
    • Chen, M., Xu, Z. E., Weinberger, K. Q., and Sha, F. Marginalized denoising autoencoders for domain adaptation. In ICML, pp. 767-774, 2012.
    • (2012) ICML , pp. 767-774
    • Chen, M.1    Xu, Z.E.2    Weinberger, K.Q.3    Sha, F.4
  • 12
    • 84892371351 scopus 로고    scopus 로고
    • Domain adaptation and sample bias correction theory and algorithm for regression
    • Cortes, C. and Mohri, M. Domain adaptation and sample bias correction theory and algorithm for regression. Theor. Comput. Sci., 519:103-126, 2014.
    • (2014) Theor. Comput. Sci. , vol.519 , pp. 103-126
    • Cortes, C.1    Mohri, M.2
  • 13
    • 85162073649 scopus 로고    scopus 로고
    • Learning bounds for importance weighting
    • Cortes, C, Mansour, Y., and Mohri, M. Learning bounds for importance weighting. In NIPS, pp. 442-450, 2010.
    • (2010) NIPS , pp. 442-450
    • Cortes, C.1    Mansour, Y.2    Mohri, M.3
  • 14
    • 84954171707 scopus 로고    scopus 로고
    • Adaptation algorithm and theory based on generalized discrepancy
    • Cortes, C, Mohri, M., and Medina, A. Muñoz. Adaptation algorithm and theory based on generalized discrepancy. In ACM SIGKDD, pp. 169-178, 2015.
    • (2015) ACM SIGKDD , pp. 169-178
    • Cortes, C.1    Mohri, M.2    Medina, A.M.3
  • 15
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Daumé III, H. Frustratingly easy domain adaptation. In ACL, 2007.
    • (2007) ACL
    • Daumé, H.1
  • 16
    • 84969802531 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by backpropagation
    • Ganin, Y and Lempitsky, V. S. Unsupervised domain adaptation by backpropagation. In ICML, pp. 1180-1189, 2015.
    • (2015) ICML , pp. 1180-1189
    • Ganin, Y.1    Lempitsky, V.S.2
  • 18
  • 19
    • 84897558883 scopus 로고    scopus 로고
    • A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers
    • Germain, P., Habrard, A., Laviolette, F., and Morvant, E. A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers. In ICML, pp. 738-746, 2013.
    • (2013) ICML , pp. 738-746
    • Germain, P.1    Habrard, A.2    Laviolette, F.3    Morvant, E.4
  • 20
    • 84938332952 scopus 로고    scopus 로고
    • Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm
    • Germain, P., Lacasse, A., Laviolette, F., Marchand,., and Roy, J.-F. Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm. JMLR, 16:787-860, 2015.
    • (2015) JMLR , vol.16 , pp. 787-860
    • Germain, P.1    Lacasse, A.2    Laviolette, F.3    Marchand4    Roy, J.-F.5
  • 21
    • 0012118930 scopus 로고    scopus 로고
    • A PAC-Bayesian margin bound for linear classifiers: Why svms work
    • Herbrich, R. and Graepel, T. A PAC-Bayesian margin bound for linear classifiers: Why svms work. In NIPS, pp. 224-230, 2000.
    • (2000) NIPS , pp. 224-230
    • Herbrich, R.1    Graepel, T.2
  • 24
    • 77956942790 scopus 로고    scopus 로고
    • PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier
    • Laçasse, A., Laviolette, F., Marchand, M., Germain, P., and Usunier, N. PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier. In NIPS, pp. 769-776, 2006.
    • (2006) NIPS , pp. 769-776
    • Laçasse, A.1    Laviolette, F.2    Marchand, M.3    Germain, P.4    Usunier, N.5
  • 25
    • 21244491075 scopus 로고    scopus 로고
    • PAC-Bayes & margins
    • Langford, J. and Shawe-Taylor, J. PAC-Bayes & margins. In NIPS, pp. 439-446, 2002.
    • (2002) NIPS , pp. 439-446
    • Langford, J.1    Shawe-Taylor, J.2
  • 26
    • 84862281776 scopus 로고    scopus 로고
    • A Bayesian divergence prior for classiffier adaptation
    • Li, X. and Bilmes, J. A Bayesian divergence prior for classiffier adaptation. In AISTATS, pp. 275-282, 2007.
    • (2007) AISTATS , pp. 275-282
    • Li, X.1    Bilmes, J.2
  • 27
    • 40049107811 scopus 로고    scopus 로고
    • Evigan: A hidden variable model for integrating gene evidence for eukaryotic gene prediction
    • Liu, Q., Mackey, A. J., Roos, D. S., and Pereira, F. Evigan: a hidden variable model for integrating gene evidence for eukaryotic gene prediction. Bioinformatics, 24(5):597-605, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.5 , pp. 597-605
    • Liu, Q.1    Mackey, A.J.2    Roos, D.S.3    Pereira, F.4
  • 28
    • 84898072330 scopus 로고    scopus 로고
    • Domain adaptation: Learning bounds and algorithms
    • Mansour, Y, Mohri, M., and Rostamizadeh, A. Domain adaptation: Learning bounds and algorithms. In COLT, 2009.
    • (2009) COLT
    • Mansour, Y.1    Mohri, M.2    Rostamizadeh, A.3
  • 30
    • 80053452778 scopus 로고    scopus 로고
    • A note on the PAC-Bayesian theorem
    • Maurer, A. A note on the PAC-Bayesian theorem. CoRR, cs. LG/0411099, 2004.
    • (2004) CoRR, Cs. LG/0411099
    • Maurer, A.1
  • 31
    • 0033281518 scopus 로고    scopus 로고
    • Some PAC-Bayesian theorems
    • McAllester, D. A. Some PAC-Bayesian theorems. Mach. Learn., 37:355-363, 1999.
    • (1999) Mach. Learn. , vol.37 , pp. 355-363
    • McAllester, D.A.1
  • 32
    • 85162419778 scopus 로고    scopus 로고
    • Generalization bounds and consistency for latent structural probit and ramp loss
    • McAllester, D. A. and Keshet, J. Generalization bounds and consistency for latent structural probit and ramp loss. In NIPS, pp. 2205-2212, 2011.
    • (2011) NIPS , pp. 2205-2212
    • McAllester, D.A.1    Keshet, J.2
  • 33
    • 84867715391 scopus 로고    scopus 로고
    • Parsimonious unsupervised and semi-supervised domain adaptation with good similarity functions
    • Morvant, E., Habrard, A., and Ayache, S. Parsimonious Unsupervised and Semi-Supervised Domain Adaptation with Good Similarity Functions. KAIS, 33(2):309-349, 2012.
    • (2012) KAIS , vol.33 , Issue.2 , pp. 309-349
    • Morvant, E.1    Habrard, A.2    Ayache, S.3
  • 34
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S. J. and Yang, Q. A survey on transfer learning. T. Knowl. Data En., 22(10):1345-1359, 2010.
    • (2010) T. Knowl. Data En. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 36
    • 85032751052 scopus 로고    scopus 로고
    • Visual domain adaptation: A survey of recent advances
    • Patel, V. M., Gopalan, R., Li, R., and Chellappa, R. Visual domain adaptation: A survey of recent advances. IEEE Signal Proc. Mag., 32(3):53-69, 2015.
    • (2015) IEEE Signal Proc. Mag. , vol.32 , Issue.3 , pp. 53-69
    • Patel, V.M.1    Gopalan, R.2    Li, R.3    Chellappa, R.4
  • 39
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Statist. Plann. Inference, 90(2):227-244, 2000.
    • (2000) J. Statist. Plann. Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 40
    • 52649148544 scopus 로고    scopus 로고
    • Direct importance estimation with model selection and its application to covariate shift adaptation
    • Sugiyama, M., Nakajima, S., Kashima, H., von Biinau, P., and Kawanabe, M. Direct importance estimation with model selection and its application to covariate shift adaptation. In NIPS, 2007.
    • (2007) NIPS
    • Sugiyama, M.1    Nakajima, S.2    Kashima, H.3    Von Biinau, P.4    Kawanabe, M.5
  • 41
    • 80053437717 scopus 로고    scopus 로고
    • Access to unlabeled data can speed up prediction time
    • Urner, R., Shalev-Shwartz, S., and Ben-David, S. Access to unlabeled data can speed up prediction time. In ICML, pp. 641-648, 2011.
    • (2011) ICML , pp. 641-648
    • Urner, R.1    Shalev-Shwartz, S.2    Ben-David, S.3
  • 42
    • 84877734812 scopus 로고    scopus 로고
    • Generalization bounds for domain adaptation
    • Zhang, C, Zhang, L., and Ye, J. Generalization bounds for domain adaptation. In NIPS, pp. 3320-3328, 2012.
    • (2012) NIPS , pp. 3320-3328
    • Zhang, C.1    Zhang, L.2    Ye, J.3
  • 43
    • 77958032545 scopus 로고    scopus 로고
    • Cross validation framework to choose amongst models and datasets for transfer learning
    • Zhong, E., Fan, W., Yang, Q., Verscheure, O., and Ren, J. Cross validation framework to choose amongst models and datasets for transfer learning. In ECML-PKDD, pp. 547-562, 2010.
    • (2010) ECML-PKDD , pp. 547-562
    • Zhong, E.1    Fan, W.2    Yang, Q.3    Verscheure, O.4    Ren, J.5
  • 44
    • 71149105482 scopus 로고    scopus 로고
    • PAC-Bayesian learning of linear classifiers
    • Germain, P., Lacasse, A., Laviolette, F., and Marchand, M. PAC-Bayesian learning of linear classifiers. In ICML, pp. 353-360, 2009.
    • (2009) ICML , pp. 353-360
    • Germain, P.1    Lacasse, A.2    Laviolette, F.3    Marchand, M.4
  • 45
    • 84897558883 scopus 로고    scopus 로고
    • A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers
    • Germain, P., Habrard, A., Laviolette, F., and Morvant, E. A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers. In ICML, pp. 738-746, 2013.
    • (2013) ICML , pp. 738-746
    • Germain, P.1    Habrard, A.2    Laviolette, F.3    Morvant, E.4
  • 47
    • 80053452778 scopus 로고    scopus 로고
    • A note on the PAC-Bayesian theorem
    • cs. LG/0411099
    • Maurer, A. A note on the PAC-Bayesian theorem. CoRR, cs. LG/0411099, 2004.
    • (2004) CoRR
    • Maurer, A.1
  • 48
    • 84938380260 scopus 로고    scopus 로고
    • A PAC-Bayesian tutorial with a dropout bound
    • McAllester, D. A PAC-Bayesian tutorial with a dropout bound. CoRR, abs/1307.2118, 2013.
    • (2013) CoRR
    • McAllester, D.1
  • 49
    • 79551481554 scopus 로고    scopus 로고
    • PAC-Bayesian analysis of co-clustering and beyond
    • Seidin, Y. and Tishby, N. PAC-Bayesian analysis of co-clustering and beyond. JMLR, 11:3595-3646, 2010.
    • (2010) JMLR , vol.11 , pp. 3595-3646
    • Seidin, Y.1    Tishby, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.