-
1
-
-
84864069264
-
Tighter PAC-Bayes bounds
-
Ambroladze, A., Parrado-Hernández, E., and Shawe-Taylor, J. Tighter PAC-Bayes bounds. In NIPS, pp. 9-16, 2006.
-
(2006)
NIPS
, pp. 9-16
-
-
Ambroladze, A.1
Parrado-Hernández, E.2
Shawe-Taylor, J.3
-
2
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. Analysis of representations for domain adaptation. In NIPS, pp. 137-144, 2006.
-
(2006)
NIPS
, pp. 137-144
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
3
-
-
84897573740
-
A theory of learning from different domains
-
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. Wortman. A theory of learning from different domains. Mach. Learn., 79 (1-2). T51-175, 2010.
-
(2010)
Mach. Learn.
, vol.79
, Issue.1-2
, pp. T51-T175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
4
-
-
84885824646
-
Domain adaptation-can quantity compensate for quality?
-
Ben-David, S., Shalev-Shwartz, S., and Urner, R. Domain adaptation-can quantity compensate for quality? In ISAIM, 2012.
-
(2012)
ISAIM
-
-
Ben-David, S.1
Shalev-Shwartz, S.2
Urner, R.3
-
5
-
-
84969939978
-
Active nearest neighbors in changing environments
-
Berlind, C. and Urner, R. Active nearest neighbors in changing environments. In ICML, pp. 1870-1879, 2015.
-
(2015)
ICML
, pp. 1870-1879
-
-
Berlind, C.1
Urner, R.2
-
7
-
-
80053342456
-
Domain adaptation with structural correspondence learning
-
Blitzer, J., McDonald, R., and Pereira, F. Domain adaptation with structural correspondence learning. In EMNLP, pp. 120-128, 2006.
-
(2006)
EMNLP
, pp. 120-128
-
-
Blitzer, J.1
McDonald, R.2
Pereira, F.3
-
8
-
-
77949852900
-
Domain adaptation problems: A DASVM classification technique and a circular validation strategy
-
Bruzzone, L. and Marconcini, M. Domain adaptation problems: A DASVM classification technique and a circular validation strategy. IEEE Trans. Pattern Anal. Mach. Inrel., 32(5):770-787, 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Inrel.
, vol.32
, Issue.5
, pp. 770-787
-
-
Bruzzone, L.1
Marconcini, M.2
-
10
-
-
85162384576
-
Co-training for domain adaptation
-
Chen, M., Weinberger, K. Q., and Blitzer, J. Co-training for domain adaptation. In NIPS, pp. 2456-2464, 2011.
-
(2011)
NIPS
, pp. 2456-2464
-
-
Chen, M.1
Weinberger, K.Q.2
Blitzer, J.3
-
11
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
Chen, M., Xu, Z. E., Weinberger, K. Q., and Sha, F. Marginalized denoising autoencoders for domain adaptation. In ICML, pp. 767-774, 2012.
-
(2012)
ICML
, pp. 767-774
-
-
Chen, M.1
Xu, Z.E.2
Weinberger, K.Q.3
Sha, F.4
-
12
-
-
84892371351
-
Domain adaptation and sample bias correction theory and algorithm for regression
-
Cortes, C. and Mohri, M. Domain adaptation and sample bias correction theory and algorithm for regression. Theor. Comput. Sci., 519:103-126, 2014.
-
(2014)
Theor. Comput. Sci.
, vol.519
, pp. 103-126
-
-
Cortes, C.1
Mohri, M.2
-
13
-
-
85162073649
-
Learning bounds for importance weighting
-
Cortes, C, Mansour, Y., and Mohri, M. Learning bounds for importance weighting. In NIPS, pp. 442-450, 2010.
-
(2010)
NIPS
, pp. 442-450
-
-
Cortes, C.1
Mansour, Y.2
Mohri, M.3
-
14
-
-
84954171707
-
Adaptation algorithm and theory based on generalized discrepancy
-
Cortes, C, Mohri, M., and Medina, A. Muñoz. Adaptation algorithm and theory based on generalized discrepancy. In ACM SIGKDD, pp. 169-178, 2015.
-
(2015)
ACM SIGKDD
, pp. 169-178
-
-
Cortes, C.1
Mohri, M.2
Medina, A.M.3
-
15
-
-
84860513476
-
Frustratingly easy domain adaptation
-
Daumé III, H. Frustratingly easy domain adaptation. In ACL, 2007.
-
(2007)
ACL
-
-
Daumé, H.1
-
16
-
-
84969802531
-
Unsupervised domain adaptation by backpropagation
-
Ganin, Y and Lempitsky, V. S. Unsupervised domain adaptation by backpropagation. In ICML, pp. 1180-1189, 2015.
-
(2015)
ICML
, pp. 1180-1189
-
-
Ganin, Y.1
Lempitsky, V.S.2
-
17
-
-
84979887690
-
Domain-adversarial training of neural networks
-
Ganin, Y, Ustinova, E., H, Ajakan, Germain, P., Larochelle, H., Laviolette, F, Marchand, M., and Lempitsky, V. Domain-adversarial training of neural networks. JMLR, 17(59):1-35, 2016.
-
(2016)
JMLR
, vol.17
, Issue.59
, pp. 1-35
-
-
Ganin, Y.1
Ustinova, E.2
Ajakan, H.3
Germain, P.4
Larochelle, H.5
Laviolette, F.6
Marchand, M.7
Lempitsky, V.8
-
18
-
-
71149105482
-
PAC-Bayesian learning of linear classifiers
-
Germain, P., Laçasse, A., Laviolette, F, and Marchand, M. PAC-Bayesian learning of linear classifiers. In ICML, pp. 353-360, 2009.
-
(2009)
ICML
, pp. 353-360
-
-
Germain, P.1
Laçasse, A.2
Laviolette, F.3
Marchand, M.4
-
19
-
-
84897558883
-
A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers
-
Germain, P., Habrard, A., Laviolette, F., and Morvant, E. A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers. In ICML, pp. 738-746, 2013.
-
(2013)
ICML
, pp. 738-746
-
-
Germain, P.1
Habrard, A.2
Laviolette, F.3
Morvant, E.4
-
20
-
-
84938332952
-
Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm
-
Germain, P., Lacasse, A., Laviolette, F., Marchand,., and Roy, J.-F. Risk bounds for the majority vote: From a PAC-Bayesian analysis to a learning algorithm. JMLR, 16:787-860, 2015.
-
(2015)
JMLR
, vol.16
, pp. 787-860
-
-
Germain, P.1
Lacasse, A.2
Laviolette, F.3
Marchand4
Roy, J.-F.5
-
21
-
-
0012118930
-
A PAC-Bayesian margin bound for linear classifiers: Why svms work
-
Herbrich, R. and Graepel, T. A PAC-Bayesian margin bound for linear classifiers: Why svms work. In NIPS, pp. 224-230, 2000.
-
(2000)
NIPS
, pp. 224-230
-
-
Herbrich, R.1
Graepel, T.2
-
22
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Huang, J., Smola, A., Gretton, A., Borgwardt, K., and Schölkopf, B. Correcting sample selection bias by unlabeled data. In NIPS, pp. 601-608, 2006.
-
(2006)
NIPS
, pp. 601-608
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.4
Schölkopf, B.5
-
24
-
-
77956942790
-
PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier
-
Laçasse, A., Laviolette, F., Marchand, M., Germain, P., and Usunier, N. PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier. In NIPS, pp. 769-776, 2006.
-
(2006)
NIPS
, pp. 769-776
-
-
Laçasse, A.1
Laviolette, F.2
Marchand, M.3
Germain, P.4
Usunier, N.5
-
25
-
-
21244491075
-
PAC-Bayes & margins
-
Langford, J. and Shawe-Taylor, J. PAC-Bayes & margins. In NIPS, pp. 439-446, 2002.
-
(2002)
NIPS
, pp. 439-446
-
-
Langford, J.1
Shawe-Taylor, J.2
-
26
-
-
84862281776
-
A Bayesian divergence prior for classiffier adaptation
-
Li, X. and Bilmes, J. A Bayesian divergence prior for classiffier adaptation. In AISTATS, pp. 275-282, 2007.
-
(2007)
AISTATS
, pp. 275-282
-
-
Li, X.1
Bilmes, J.2
-
27
-
-
40049107811
-
Evigan: A hidden variable model for integrating gene evidence for eukaryotic gene prediction
-
Liu, Q., Mackey, A. J., Roos, D. S., and Pereira, F. Evigan: a hidden variable model for integrating gene evidence for eukaryotic gene prediction. Bioinformatics, 24(5):597-605, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.5
, pp. 597-605
-
-
Liu, Q.1
Mackey, A.J.2
Roos, D.S.3
Pereira, F.4
-
28
-
-
84898072330
-
Domain adaptation: Learning bounds and algorithms
-
Mansour, Y, Mohri, M., and Rostamizadeh, A. Domain adaptation: Learning bounds and algorithms. In COLT, 2009.
-
(2009)
COLT
-
-
Mansour, Y.1
Mohri, M.2
Rostamizadeh, A.3
-
30
-
-
80053452778
-
A note on the PAC-Bayesian theorem
-
Maurer, A. A note on the PAC-Bayesian theorem. CoRR, cs. LG/0411099, 2004.
-
(2004)
CoRR, Cs. LG/0411099
-
-
Maurer, A.1
-
31
-
-
0033281518
-
Some PAC-Bayesian theorems
-
McAllester, D. A. Some PAC-Bayesian theorems. Mach. Learn., 37:355-363, 1999.
-
(1999)
Mach. Learn.
, vol.37
, pp. 355-363
-
-
McAllester, D.A.1
-
32
-
-
85162419778
-
Generalization bounds and consistency for latent structural probit and ramp loss
-
McAllester, D. A. and Keshet, J. Generalization bounds and consistency for latent structural probit and ramp loss. In NIPS, pp. 2205-2212, 2011.
-
(2011)
NIPS
, pp. 2205-2212
-
-
McAllester, D.A.1
Keshet, J.2
-
33
-
-
84867715391
-
Parsimonious unsupervised and semi-supervised domain adaptation with good similarity functions
-
Morvant, E., Habrard, A., and Ayache, S. Parsimonious Unsupervised and Semi-Supervised Domain Adaptation with Good Similarity Functions. KAIS, 33(2):309-349, 2012.
-
(2012)
KAIS
, vol.33
, Issue.2
, pp. 309-349
-
-
Morvant, E.1
Habrard, A.2
Ayache, S.3
-
34
-
-
77956031473
-
A survey on transfer learning
-
Pan, S. J. and Yang, Q. A survey on transfer learning. T. Knowl. Data En., 22(10):1345-1359, 2010.
-
(2010)
T. Knowl. Data En.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
35
-
-
84873465379
-
PAC-Bayes bounds with data dependent priors
-
Parrado-Hernández, E., Ambroladze, A., Shawe-Taylor, J., and Sun, S. PAC-Bayes bounds with data dependent priors. JMLR, 13:3507-3531, 2012.
-
(2012)
JMLR
, vol.13
, pp. 3507-3531
-
-
Parrado-Hernández, E.1
Ambroladze, A.2
Shawe-Taylor, J.3
Sun, S.4
-
36
-
-
85032751052
-
Visual domain adaptation: A survey of recent advances
-
Patel, V. M., Gopalan, R., Li, R., and Chellappa, R. Visual domain adaptation: A survey of recent advances. IEEE Signal Proc. Mag., 32(3):53-69, 2015.
-
(2015)
IEEE Signal Proc. Mag.
, vol.32
, Issue.3
, pp. 53-69
-
-
Patel, V.M.1
Gopalan, R.2
Li, R.3
Chellappa, R.4
-
37
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V, Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V, Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. JMLR, 12:2825-2830, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
38
-
-
67149129014
-
-
The MIT Press
-
Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. Dataset shift in machine learning. The MIT Press, 2009.
-
(2009)
Dataset Shift in Machine Learning
-
-
Quionero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.D.4
-
39
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Statist. Plann. Inference, 90(2):227-244, 2000.
-
(2000)
J. Statist. Plann. Inference
, vol.90
, Issue.2
, pp. 227-244
-
-
Shimodaira, H.1
-
40
-
-
52649148544
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
Sugiyama, M., Nakajima, S., Kashima, H., von Biinau, P., and Kawanabe, M. Direct importance estimation with model selection and its application to covariate shift adaptation. In NIPS, 2007.
-
(2007)
NIPS
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Von Biinau, P.4
Kawanabe, M.5
-
41
-
-
80053437717
-
Access to unlabeled data can speed up prediction time
-
Urner, R., Shalev-Shwartz, S., and Ben-David, S. Access to unlabeled data can speed up prediction time. In ICML, pp. 641-648, 2011.
-
(2011)
ICML
, pp. 641-648
-
-
Urner, R.1
Shalev-Shwartz, S.2
Ben-David, S.3
-
42
-
-
84877734812
-
Generalization bounds for domain adaptation
-
Zhang, C, Zhang, L., and Ye, J. Generalization bounds for domain adaptation. In NIPS, pp. 3320-3328, 2012.
-
(2012)
NIPS
, pp. 3320-3328
-
-
Zhang, C.1
Zhang, L.2
Ye, J.3
-
43
-
-
77958032545
-
Cross validation framework to choose amongst models and datasets for transfer learning
-
Zhong, E., Fan, W., Yang, Q., Verscheure, O., and Ren, J. Cross validation framework to choose amongst models and datasets for transfer learning. In ECML-PKDD, pp. 547-562, 2010.
-
(2010)
ECML-PKDD
, pp. 547-562
-
-
Zhong, E.1
Fan, W.2
Yang, Q.3
Verscheure, O.4
Ren, J.5
-
44
-
-
71149105482
-
PAC-Bayesian learning of linear classifiers
-
Germain, P., Lacasse, A., Laviolette, F., and Marchand, M. PAC-Bayesian learning of linear classifiers. In ICML, pp. 353-360, 2009.
-
(2009)
ICML
, pp. 353-360
-
-
Germain, P.1
Lacasse, A.2
Laviolette, F.3
Marchand, M.4
-
45
-
-
84897558883
-
A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers
-
Germain, P., Habrard, A., Laviolette, F., and Morvant, E. A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers. In ICML, pp. 738-746, 2013.
-
(2013)
ICML
, pp. 738-746
-
-
Germain, P.1
Habrard, A.2
Laviolette, F.3
Morvant, E.4
-
46
-
-
23744500479
-
-
Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific tools for Python, 2001-. URL http://www.sc ipy.org/.
-
(2001)
SciPy: Open Source Scientific Tools for Python
-
-
Jones, E.1
Oliphant, T.2
Peterson, P.3
-
47
-
-
80053452778
-
A note on the PAC-Bayesian theorem
-
cs. LG/0411099
-
Maurer, A. A note on the PAC-Bayesian theorem. CoRR, cs. LG/0411099, 2004.
-
(2004)
CoRR
-
-
Maurer, A.1
-
48
-
-
84938380260
-
A PAC-Bayesian tutorial with a dropout bound
-
McAllester, D. A PAC-Bayesian tutorial with a dropout bound. CoRR, abs/1307.2118, 2013.
-
(2013)
CoRR
-
-
McAllester, D.1
-
49
-
-
79551481554
-
PAC-Bayesian analysis of co-clustering and beyond
-
Seidin, Y. and Tishby, N. PAC-Bayesian analysis of co-clustering and beyond. JMLR, 11:3595-3646, 2010.
-
(2010)
JMLR
, vol.11
, pp. 3595-3646
-
-
Seidin, Y.1
Tishby, N.2
|