메뉴 건너뛰기




Volumn 122, Issue , 2016, Pages 206-221

Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative

Author keywords

Auxiliary data; Continuous Change Detection and Classification (CCDC); Land cover classification; Landsat; Training strategy

Indexed keywords

DATA MINING; DECISION TREES; FORESTRY; GEOLOGICAL SURVEYS; GEOLOGY; IMAGE PROCESSING; PIXELS; PROBABILITY; SALINITY MEASUREMENT; SIGNAL DETECTION;

EID: 84999015235     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.11.004     Document Type: Article
Times cited : (148)

References (89)
  • 2
    • 35748978234 scopus 로고    scopus 로고
    • Empirical characterization of random forest variable importance measures
    • Archer, K.J., Kimes, R.V., Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52:4 (2008), 2249–2260.
    • (2008) Comput. Stat. Data Anal. , vol.52 , Issue.4 , pp. 2249-2260
    • Archer, K.J.1    Kimes, R.V.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan, J.C.W., Paelinckx, D., Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 112:6 (2008), 2999–3011.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 9
    • 84883234670 scopus 로고    scopus 로고
    • Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota
    • Corcoran, J.M., Knight, J.F., Gallant, A.L., Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota. Remote Sens. 5:7 (2013), 3212–3238.
    • (2013) Remote Sens. , vol.5 , Issue.7 , pp. 3212-3238
    • Corcoran, J.M.1    Knight, J.F.2    Gallant, A.L.3
  • 10
    • 0003396332 scopus 로고
    • Sampling Techniques
    • John Wiley & Sons
    • Cochran, W.G., Sampling Techniques. 1977, John Wiley & Sons.
    • (1977)
    • Cochran, W.G.1
  • 11
    • 84888067055 scopus 로고    scopus 로고
    • Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information
    • Cracknell, M.J., Reading, A.M., Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 63 (2014), 22–33.
    • (2014) Comput. Geosci. , vol.63 , pp. 22-33
    • Cracknell, M.J.1    Reading, A.M.2
  • 13
    • 0003401014 scopus 로고
    • Statistics and Data Analysis in Geology
    • second ed. J. Wiley and Sons New York, N. Y.
    • Davis, J.C., Statistics and Data Analysis in Geology. second ed., 1986, J. Wiley and Sons, New York, N. Y., 646.
    • (1986) , pp. 646
    • Davis, J.C.1
  • 14
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks, A., Jo, T., Japkowicz, N., A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20:1 (2004), 18–36.
    • (2004) Comput. Intell. , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 15
    • 0029478734 scopus 로고
    • Land cover classification by an artificial neural network with ancillary information
    • Foody, G.M., Land cover classification by an artificial neural network with ancillary information. Int. J. Geographical Inf. Syst. 9:5 (1995), 527–542.
    • (1995) Int. J. Geographical Inf. Syst. , vol.9 , Issue.5 , pp. 527-542
    • Foody, G.M.1
  • 16
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • Foody, G.M., Arora, M.K., An evaluation of some factors affecting the accuracy of classification by an artificial neural network. Int. J. Remote Sens. 18:4 (1997), 799–810.
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.4 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 17
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM
    • Foody, G.M., Mathur, A., The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 103:2 (2006), 179–189.
    • (2006) Remote Sens. Environ. , vol.103 , Issue.2 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 18
    • 84860256417 scopus 로고    scopus 로고
    • Evaluating effectiveness of down-sampling for stratified designs and unbalanced prevalence in random forest models of tree species distributions in Nevada
    • Freeman, E.A., Moisen, G.G., Frescino, T.S., Evaluating effectiveness of down-sampling for stratified designs and unbalanced prevalence in random forest models of tree species distributions in Nevada. Ecol. Model. 233 (2012), 1–10.
    • (2012) Ecol. Model. , vol.233 , pp. 1-10
    • Freeman, E.A.1    Moisen, G.G.2    Frescino, T.S.3
  • 21
    • 84998750189 scopus 로고    scopus 로고
    • A note on procedures used for accuracy assessment in land cover maps derived from AVHRR data
    • Friedl, M.A., Woodcock, C., Gopal, S., Muchoney, D., Strahler, A.H., & Barker-Schaaf, C., 2000. A note on procedures used for accuracy assessment in land cover maps derived from AVHRR data.
    • (2000)
    • Friedl, M.A.1    Woodcock, C.2    Gopal, S.3    Muchoney, D.4    Strahler, A.H.5    Barker-Schaaf, C.6
  • 23
    • 84959009355 scopus 로고    scopus 로고
    • The challenges of remote monitoring of wetlands
    • Gallant, A.L., The challenges of remote monitoring of wetlands. Remote Sens. 7:8 (2015), 10938–10950.
    • (2015) Remote Sens. , vol.7 , Issue.8 , pp. 10938-10950
    • Gallant, A.L.1
  • 24
    • 23844437372 scopus 로고    scopus 로고
    • Using an ecoregion framework to analyze land-cover and land-use dynamics
    • Gallant, A.L., Loveland, T.R., Sohl, T.L., Napton, D.E., Using an ecoregion framework to analyze land-cover and land-use dynamics. Environ. Manage. 34:1 (2004), S89–S110.
    • (2004) Environ. Manage. , vol.34 , Issue.1 , pp. S89-S110
    • Gallant, A.L.1    Loveland, T.R.2    Sohl, T.L.3    Napton, D.E.4
  • 27
    • 84872359932 scopus 로고    scopus 로고
    • Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
    • Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34:7 (2013), 2607–2654.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.7 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.4    Zhao, Y.5    Liang, L.6
  • 28
    • 0033080043 scopus 로고    scopus 로고
    • Fuzzy neural classification of global land cover from a 1 degree AVHRR data set
    • Gopal, S., Woodcock, C.E., Strahler, A., Fuzzy neural classification of global land cover from a 1 degree AVHRR data set. Remote Sens. Environ. 67 (1999), 230–243.
    • (1999) Remote Sens. Environ. , vol.67 , pp. 230-243
    • Gopal, S.1    Woodcock, C.E.2    Strahler, A.3
  • 29
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham, J., Chen, Y., Crawford, M.M., Ghosh, J., Investigation of the random forest framework for classification of hyperspectral data. Geosci. Remote Sens., IEEE Trans. 43:3 (2005), 492–501.
    • (2005) Geosci. Remote Sens., IEEE Trans. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 30
    • 0029667619 scopus 로고    scopus 로고
    • Optimistic bias in classification accuracy assessment
    • Hammond, T.O., Verbyla, D.L., Optimistic bias in classification accuracy assessment. Int. J. Remote Sens. 17:6 (1996), 1261–1266.
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.6 , pp. 1261-1266
    • Hammond, T.O.1    Verbyla, D.L.2
  • 31
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge, V.J., Austin, J., A survey of outlier detection methodologies. Artif. Intell. Rev. 22:2 (2004), 85–126.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 33
    • 84929465562 scopus 로고    scopus 로고
    • Completion of the 2011 national land cover database for the conterminous United States–representing a decade of land cover change information
    • Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., Megown, K., Completion of the 2011 national land cover database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Eng. Remote Sens. 81:5 (2015), 345–354.
    • (2015) Photogrammetric Eng. Remote Sens. , vol.81 , Issue.5 , pp. 345-354
    • Homer, C.1    Dewitz, J.2    Yang, L.3    Jin, S.4    Danielson, P.5    Xian, G.6    Coulston, J.7    Herold, N.8    Wickham, J.9    Megown, K.10
  • 35
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., Davis, L.S., Townshend, J.R., An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 23:4 (2002), 725–749.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.3
  • 36
    • 84896836907 scopus 로고    scopus 로고
    • Assessing the impact of training sample selection on accuracy of an urban classification: a case study in Denver, Colorado
    • Jin, H., Stehman, S.V., Mountrakis, G., Assessing the impact of training sample selection on accuracy of an urban classification: a case study in Denver, Colorado. Int. J. Remote Sens. 35:6 (2014), 2067–2081.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.6 , pp. 2067-2081
    • Jin, H.1    Stehman, S.V.2    Mountrakis, G.3
  • 37
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
    • Lawrence, R.L., Wood, S.D., Sheley, R.L., Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 100:3 (2006), 356–362.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.3 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 38
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: problems and solutions
    • Ling, C.X., Li, C., Data mining for direct marketing: problems and solutions. KDD, vol. 98, 1998, 73–79.
    • (1998) KDD , vol.98 , pp. 73-79
    • Ling, C.X.1    Li, C.2
  • 39
    • 0034655807 scopus 로고    scopus 로고
    • Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
    • Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L.W.M.J., Merchant, J.W., Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21:6–7 (2000), 1303–1330.
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.6-7 , pp. 1303-1330
    • Loveland, T.R.1    Reed, B.C.2    Brown, J.F.3    Ohlen, D.O.4    Zhu, Z.5    Yang, L.W.M.J.6    Merchant, J.W.7
  • 41
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D., Weng, Q., A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28:5 (2007), 823–870.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 42
    • 0028886793 scopus 로고
    • Integration of ancillary data into a maximum-likelihood classifier with nonparametric priors
    • Maselli, F., Conese, C., De Filippis, T., Romani, M., Integration of ancillary data into a maximum-likelihood classifier with nonparametric priors. ISPRS J. Photogrammetry Remote Sens. 50:2 (1995), 2–11.
    • (1995) ISPRS J. Photogrammetry Remote Sens. , vol.50 , Issue.2 , pp. 2-11
    • Maselli, F.1    Conese, C.2    De Filippis, T.3    Romani, M.4
  • 43
    • 0003424164 scopus 로고    scopus 로고
    • Computer Processing of Remotely-Sensed Images
    • third ed. Wiley Chichester
    • Mather, P.M., Computer Processing of Remotely-Sensed Images. third ed., 2004, Wiley, Chichester.
    • (2004)
    • Mather, P.M.1
  • 44
    • 84928328671 scopus 로고    scopus 로고
    • Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin
    • Mellor, A., Boukir, S., Haywood, A., Jones, S., Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogrammetry Remote Sens. 105 (2015), 155–168.
    • (2015) ISPRS J. Photogrammetry Remote Sens. , vol.105 , pp. 155-168
    • Mellor, A.1    Boukir, S.2    Haywood, A.3    Jones, S.4
  • 45
    • 84937918615 scopus 로고    scopus 로고
    • On the importance of training data sample selection in random forest image classification: a case study in peatland ecosystem mapping
    • Millard, K., Richardson, M., On the importance of training data sample selection in random forest image classification: a case study in peatland ecosystem mapping. Remote Sens. 7:7 (2015), 8489–8515.
    • (2015) Remote Sens. , vol.7 , Issue.7 , pp. 8489-8515
    • Millard, K.1    Richardson, M.2
  • 46
    • 0015971972 scopus 로고
    • The jackknife – a review
    • Miller, R.G., The jackknife – a review. Biometrika 61:1 (1974), 1–15.
    • (1974) Biometrika , vol.61 , Issue.1 , pp. 1-15
    • Miller, R.G.1
  • 47
    • 0026359098 scopus 로고
    • Digital terrain modelling: a review of hydrological, geomorphological, and biological applications
    • Moore, I.D., Grayson, R.B., Ladson, A.R., Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol. Process. 5 (1991), 3–30.
    • (1991) Hydrol. Process. , vol.5 , pp. 3-30
    • Moore, I.D.1    Grayson, R.B.2    Ladson, A.R.3
  • 48
    • 84998724615 scopus 로고    scopus 로고
    • Natural Resources Conservation Service, U.S. Department of Agriculture
    • <> (accessed 8.03.16).
    • Natural Resources Conservation Service, U.S. Department of Agriculture, 2016. Web Soil Survey. < http://websoilsurvey.nrcs.usda.gov/> (accessed 8.03.16).
    • (2016) Web Soil Survey
  • 50
    • 0023486061 scopus 로고
    • Ecoregions of the conterminous United States
    • Omernik, J.M., Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 77 (1987), 118–125.
    • (1987) Ann. Assoc. Am. Geogr. , vol.77 , pp. 118-125
    • Omernik, J.M.1
  • 51
    • 48349112954 scopus 로고    scopus 로고
    • A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US
    • Ozdogan, M., Gutman, G., A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US. Remote Sens. Environ. 112:9 (2008), 3520–3537.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.9 , pp. 3520-3537
    • Ozdogan, M.1    Gutman, G.2
  • 52
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M., Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26:1 (2005), 217–222.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 53
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M., Mather, P.M., An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 86:4 (2003), 554–565.
    • (2003) Remote Sens. Environ. , vol.86 , Issue.4 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 54
    • 0027067290 scopus 로고
    • Variability and bias in experimentally measured classifier error rates
    • Piper, J., Variability and bias in experimentally measured classifier error rates. Pattern Recogn. Lett. 13:10 (1992), 685–692.
    • (1992) Pattern Recogn. Lett. , vol.13 , Issue.10 , pp. 685-692
    • Piper, J.1
  • 56
    • 0004187581 scopus 로고
    • An Introduction to Spectral Analysis
    • Pion Ltd. London
    • Rayner, J.N., An Introduction to Spectral Analysis. 1971, Pion Ltd., London, 174.
    • (1971) , pp. 174
    • Rayner, J.N.1
  • 58
    • 4644248171 scopus 로고    scopus 로고
    • Developing a science of land change: challenges and methodological issues
    • Rindfuss, R.R., Walsh, S.J., Turner, B.L., Fox, J., Mishra, V., Developing a science of land change: challenges and methodological issues. Proc. Natl. Acad. Sci. U.S.A. 101:39 (2004), 13976–13981.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , Issue.39 , pp. 13976-13981
    • Rindfuss, R.R.1    Walsh, S.J.2    Turner, B.L.3    Fox, J.4    Mishra, V.5
  • 60
  • 61
    • 84950439147 scopus 로고
    • Unmasking multivariate outliers and leverage points
    • Rousseeuw, P.J., Van Zomeren, B.C., Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 85:411 (1990), 633–639.
    • (1990) J. Am. Stat. Assoc. , vol.85 , Issue.411 , pp. 633-639
    • Rousseeuw, P.J.1    Van Zomeren, B.C.2
  • 62
    • 84908340188 scopus 로고    scopus 로고
    • Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description (No. 2013–1057)
    • U.S. Geological Survey
    • Schmidt, G., Jenkerson, C., Masek, J., Vermote, E., Gao, F., Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description (No. 2013–1057). 2013, U.S. Geological Survey.
    • (2013)
    • Schmidt, G.1    Jenkerson, C.2    Masek, J.3    Vermote, E.4    Gao, F.5
  • 64
    • 0003826720 scopus 로고    scopus 로고
    • Morphological Image Analysis: Principles and Applications
    • Springer Science & Business Media
    • Soille, P., Morphological Image Analysis: Principles and Applications. 2013, Springer Science & Business Media.
    • (2013)
    • Soille, P.1
  • 66
    • 0019227654 scopus 로고
    • The use of prior probabilities in maximum likelihood classification of remote sensing data
    • Strahler, A.H., The use of prior probabilities in maximum likelihood classification of remote sensing data. Remote Sens. Environ. 10 (1980), 135–163.
    • (1980) Remote Sens. Environ. , vol.10 , pp. 135-163
    • Strahler, A.H.1
  • 67
    • 0034161563 scopus 로고    scopus 로고
    • Integrating contextual information with per-pixel classification for improved land cover classification
    • Stuckens, J., Coppin, P.R., Bauer, M.E., Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens. Environ. 71:3 (2000), 282–296.
    • (2000) Remote Sens. Environ. , vol.71 , Issue.3 , pp. 282-296
    • Stuckens, J.1    Coppin, P.R.2    Bauer, M.E.3
  • 69
    • 38049134453 scopus 로고    scopus 로고
    • The emergence of land change science for global environmental change and sustainability
    • Turner, B.L., Lambin, E.F., Reenberg, A., The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. 104:52 (2007), 20666–20671.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , Issue.52 , pp. 20666-20671
    • Turner, B.L.1    Lambin, E.F.2    Reenberg, A.3
  • 72
    • 84998724704 scopus 로고    scopus 로고
    • U.S. Geological Survey
    • <> (accessed March 16, 2016).
    • U.S. Geological Survey. 2016. Landsat 8 Product Guide, Version 2.0. < http://landsat.usgs.gov/documents/provisional_l8sr_product_guide.pdf> (accessed March 16, 2016).
    • (2016) Landsat 8 Product Guide, Version 2.0
  • 73
    • 84998655912 scopus 로고    scopus 로고
    • U.S. Geological Survey
    • <> (accessed March 16, 2016).
    • U.S. Geological Survey, 2015. Land Cover Trends Project. < http://landcovertrends.usgs.gov/main/classification.html> (accessed March 16, 2016).
    • (2015) Land Cover Trends Project
  • 74
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: a survey and results of new tests
    • Verikas, Antanas, Gelzinis, Adas, Bacauskiene, Marija, Mining data with random forests: a survey and results of new tests. Pattern Recogn. 44:2 (2011), 330–349.
    • (2011) Pattern Recogn. , vol.44 , Issue.2 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 75
    • 0034983211 scopus 로고    scopus 로고
    • Completion of the 1990s national land cover data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources
    • Vogelmann, J.E., Howard, S.M., Yang, L., Larson, C.R., Wylie, B.K., Van Driel, N., Completion of the 1990s national land cover data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogrammetric Eng. Remote Sens., 67(6), 2001.
    • (2001) Photogrammetric Eng. Remote Sens. , vol.67 , Issue.6
    • Vogelmann, J.E.1    Howard, S.M.2    Yang, L.3    Larson, C.R.4    Wylie, B.K.5    Van Driel, N.6
  • 76
    • 0032104682 scopus 로고    scopus 로고
    • Regional land cover characterization using landsat thematic mapper data and ancillary data sources
    • Vogelmann, J.E., Sohl, T.L., Campbell, P.V., Shaw, D.M., Regional land cover characterization using landsat thematic mapper data and ancillary data sources. Environ. Monit. Assess. 51:1–2 (1998), 415–428.
    • (1998) Environ. Monit. Assess. , vol.51 , Issue.1-2 , pp. 415-428
    • Vogelmann, J.E.1    Sohl, T.L.2    Campbell, P.V.3    Shaw, D.M.4
  • 77
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: the effect of class distribution on tree induction
    • Weiss, G.M., Provost, F., Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Intell. Res., 2003, 315–354.
    • (2003) J. Artif. Intell. Res. , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 79
    • 34047138873 scopus 로고    scopus 로고
    • Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data
    • Wright, C., Gallant, A., Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens. Environ. 107:4 (2007), 582–605.
    • (2007) Remote Sens. Environ. , vol.107 , Issue.4 , pp. 582-605
    • Wright, C.1    Gallant, A.2
  • 82
    • 84921314842 scopus 로고    scopus 로고
    • Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction
    • Yan, L., Roy, D.P., Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction. Remote Sens. Environ. 158 (2015), 478–491.
    • (2015) Remote Sens. Environ. , vol.158 , pp. 478-491
    • Yan, L.1    Roy, D.P.2
  • 83
    • 84880164554 scopus 로고    scopus 로고
    • Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification
    • Zhen, Z., Quackenbush, L.J., Stehman, S.V., Zhang, L., Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification. Int. J. Remote Sens. 34:19 (2013), 6914–6930.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.19 , pp. 6914-6930
    • Zhen, Z.1    Quackenbush, L.J.2    Stehman, S.V.3    Zhang, L.4
  • 84
    • 84923804077 scopus 로고    scopus 로고
    • Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
    • Zhu, Z., Wang, S., Woodcock, C.E., Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159 (2015), 269–277.
    • (2015) Remote Sens. Environ. , vol.159 , pp. 269-277
    • Zhu, Z.1    Wang, S.2    Woodcock, C.E.3
  • 85
    • 83455195642 scopus 로고    scopus 로고
    • Object-based cloud and cloud shadow detection in landsat imagery
    • Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens. Environ. 118 (2012), 83–94.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 83-94
    • Zhu, Z.1    Woodcock, C.E.2
  • 86
    • 84903937476 scopus 로고    scopus 로고
    • Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change
    • Zhu, Z., Woodcock, C.E., Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 152 (2014), 217–234.
    • (2014) Remote Sens. Environ. , vol.152 , pp. 217-234
    • Zhu, Z.1    Woodcock, C.E.2
  • 87
    • 84893747703 scopus 로고    scopus 로고
    • Continuous change detection and classification of land cover using all available Landsat data
    • Zhu, Z., Woodcock, C.E., Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 144 (2014), 152–171.
    • (2014) Remote Sens. Environ. , vol.144 , pp. 152-171
    • Zhu, Z.1    Woodcock, C.E.2
  • 88
    • 84924044646 scopus 로고    scopus 로고
    • Generating synthetic Landsat images based on all available Landsat data: predicting landsat surface reflectance at any given time
    • Zhu, Z., Woodcock, C.E., Holden, C., Yang, Z., Generating synthetic Landsat images based on all available Landsat data: predicting landsat surface reflectance at any given time. Remote Sens. Environ. 162 (2015), 67–83.
    • (2015) Remote Sens. Environ. , vol.162 , pp. 67-83
    • Zhu, Z.1    Woodcock, C.E.2    Holden, C.3    Yang, Z.4
  • 89
    • 84855430126 scopus 로고    scopus 로고
    • Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data
    • Zhu, Z., Woodcock, C.E., Rogan, J., Kellndorfer, J., Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 117 (2012), 72–82.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 72-82
    • Zhu, Z.1    Woodcock, C.E.2    Rogan, J.3    Kellndorfer, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.