메뉴 건너뛰기




Volumn 63, Issue , 2014, Pages 22-33

Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information

Author keywords

Geological mapping; Machine learning; Remote sensing; Spatial clustering; Spatial information; Supervised classification

Indexed keywords

COMPUTATIONALLY EFFICIENT; GEOLOGICAL MAPPING; LITHOLOGY CLASSIFICATION; MACHINE LEARNING ALGORITHM (MLAS); SENSITIVITY TO VARIATIONS; SPATIAL CLUSTERING; SPATIAL INFORMATIONS; SUPERVISED CLASSIFICATION;

EID: 84888067055     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2013.10.008     Document Type: Article
Times cited : (455)

References (56)
  • 1
    • 0029507498 scopus 로고
    • Local indicators of spatial association - LISA
    • Anselin L. Local indicators of spatial association - LISA. Geogr. Anal. 1995, 27:93-115.
    • (1995) Geogr. Anal. , vol.27 , pp. 93-115
    • Anselin, L.1
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learn. 1996, 24:123-140.
    • (1996) Machine Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 84864536482 scopus 로고    scopus 로고
    • Semiautomated geologic mapping using self-organizing maps and airborne geophysics in the Brazilian Amazon
    • Carneiro C.C., Fraser S.J., Croacutesta A.P., Silva A.M., Barros C.E.M. Semiautomated geologic mapping using self-organizing maps and airborne geophysics in the Brazilian Amazon. Geophysics 2012, 77:K17-K24.
    • (2012) Geophysics , vol.77
    • Carneiro, C.C.1    Fraser, S.J.2    Croacutesta, A.P.3    Silva, A.M.4    Barros, C.E.M.5
  • 7
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20:37-46.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 9
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., Hart P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13:21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 10
    • 84888028156 scopus 로고    scopus 로고
    • The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using Random Forests and Support Vector Machines
    • Cracknell M.J., Reading A.M. The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using Random Forests and Support Vector Machines. Geophysics 2013, 78:WB113-WB126.
    • (2013) Geophysics , vol.78
    • Cracknell, M.J.1    Reading, A.M.2
  • 12
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Foody G.M., Mathur A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42:1335-1343.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 13
    • 0034112572 scopus 로고    scopus 로고
    • On the application of inductive machine learning tools to geographical analysis
    • Gahegan M. On the application of inductive machine learning tools to geographical analysis. Geogr. Anal. 2000, 32:113-139.
    • (2000) Geogr. Anal. , vol.32 , pp. 113-139
    • Gahegan, M.1
  • 14
    • 84888017953 scopus 로고    scopus 로고
    • On Classification of Logging Data, Department of Energy and Economics
    • Clausthal University of Technology, Germany
    • Gelfort, R., 2006. On Classification of Logging Data, Department of Energy and Economics. Clausthal University of Technology, Germany, p. 131.
    • (2006) , pp. 131
    • Gelfort, R.1
  • 17
    • 77955421711 scopus 로고    scopus 로고
    • A practical guide to model selection
    • In: Marie, J. (Ed.), Canberra, Australia, January 26 - February 6, Springer Text in Statistics, Springer
    • Guyon, I., 2009. A practical guide to model selection. In: Marie, J. (Ed.), Proceedings of the Machine Learning Summer School. Canberra, Australia, January 26 - February 6, Springer Text in Statistics, Springer p.37.
    • (2009) Proceedings of the Machine Learning Summer School , pp. 37
    • Guyon, I.1
  • 18
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham J., Yangchi C., Crawford M.M., Ghosh J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43:492-501.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 492-501
    • Ham, J.1    Yangchi, C.2    Crawford, M.M.3    Ghosh, J.4
  • 19
    • 78149439885 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining
    • Springer, New York, USA
    • Hastie T., Tibshirani R., Friedman J.H. The elements of statistical learning: data mining. Inference and Prediction 2009, Springer, New York, USA, p. 533. 2nd edn.
    • (2009) Inference and Prediction , pp. 533
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.H.3
  • 20
    • 0141647572 scopus 로고
    • Classification
    • Ellis Horwood, New York, D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.)
    • Henery R.J. Classification. Machine Learning, Neural and Statistical Classification 1994, 6-16. Ellis Horwood, New York. D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.).
    • (1994) Machine Learning, Neural and Statistical Classification , pp. 6-16
    • Henery, R.J.1
  • 21
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.-W., Lin C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13:415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 23
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang C., Davis L.S., Townshend J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23:725-749.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 24
    • 79955933382 scopus 로고    scopus 로고
    • Machine learning for spatial environmental data: theory
    • CRC Press, Boca Raton, USA
    • Kanevski M., Pozdnoukhov A., Timonin V. Machine learning for spatial environmental data: theory. Applications and Software 2009, CRC Press, Boca Raton, USA, (368 pp.).
    • (2009) Applications and Software , pp. 368
    • Kanevski, M.1    Pozdnoukhov, A.2    Timonin, V.3
  • 26
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: a review of classification techniques
    • Kotsiantis S.B. Supervised machine learning: a review of classification techniques. Informatica 2007, 31:249-268.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.B.1
  • 28
    • 59249094016 scopus 로고    scopus 로고
    • caret: Classifcation and Regression Training
    • R Package Version 5.15-023.
    • Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., 2012. caret: Classifcation and Regression Training, R Package Version 5.15-023.
    • (2012)
    • Kuhn, M.1    Wing, J.2    Weston, S.3    Williams, A.4    Keefer, C.5    Engelhardt, A.6
  • 30
    • 77951110829 scopus 로고    scopus 로고
    • The ROC skeleton for multiclass ROC estimation
    • Landgrebe T.C.W., Paclik P. The ROC skeleton for multiclass ROC estimation. Pattern Recogn. Lett. 2010, 31:949-958.
    • (2010) Pattern Recogn. Lett. , vol.31 , pp. 949-958
    • Landgrebe, T.C.W.1    Paclik, P.2
  • 31
    • 77649144509 scopus 로고    scopus 로고
    • Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: a case study at Melville Island, Canadian High Arctic
    • Leverington D.W. Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: a case study at Melville Island, Canadian High Arctic. Int. J. Remote Sens. 2010, 31:233-260.
    • (2010) Int. J. Remote Sens. , vol.31 , pp. 233-260
    • Leverington, D.W.1
  • 32
    • 84861426203 scopus 로고    scopus 로고
    • Landsat-TM-based discrimination of lithological units associated with the Purtuniq Ophiolite, Quebec, Canada
    • Leverington D.W., Moon W.M. Landsat-TM-based discrimination of lithological units associated with the Purtuniq Ophiolite, Quebec, Canada. Remote Sens. 2012, 4:1208-1231.
    • (2012) Remote Sens. , vol.4 , pp. 1208-1231
    • Leverington, D.W.1    Moon, W.M.2
  • 33
    • 80052099081 scopus 로고    scopus 로고
    • A spatial-contextual Support Vector Machine for remotely sensed image classification
    • Li C.-H., Kuo B.-C., Lin C.-T., Huang C.-S. A spatial-contextual Support Vector Machine for remotely sensed image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50:784-799.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 784-799
    • Li, C.-H.1    Kuo, B.-C.2    Lin, C.-T.3    Huang, C.-S.4
  • 34
    • 41549146235 scopus 로고    scopus 로고
    • CRC Press, Taylor & Francis Group, Boco Raton, USA
    • Lloyd C.D. Local Models for Spatial Analysis 2011, 336. CRC Press, Taylor & Francis Group, Boco Raton, USA. 2nd edn.
    • (2011) Local Models for Spatial Analysis , pp. 336
    • Lloyd, C.D.1
  • 35
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu D., Weng Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28:823-870.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 37
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F., Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42:1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 38
    • 70849095038 scopus 로고
    • Modern statistical techniques
    • Neural and Statistical Classification. Ellis Horwood, New York, D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.)
    • Molina R., PD́erez de la Blanca N., Taylor C.C. Modern statistical techniques. Machine Learning 1994, 29-49. Neural and Statistical Classification. Ellis Horwood, New York. D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.).
    • (1994) Machine Learning , pp. 29-49
    • Molina, R.1    PD́erez de la Blanca, N.2    Taylor, C.C.3
  • 40
    • 31644437406 scopus 로고    scopus 로고
    • Correlation of Olary and Broken Hill Domains, Curnamona Province: possible relationship to Mount Isa and other North Australian Pb-Zn-Ag-bearing successions
    • Page R.W., Conor C.H.H., Stevens B.P.J., Gibson G.M., Preiss W.V., Southgate P.N. Correlation of Olary and Broken Hill Domains, Curnamona Province: possible relationship to Mount Isa and other North Australian Pb-Zn-Ag-bearing successions. Econ. Geol. 2005, 100:663-676.
    • (2005) Econ. Geol. , vol.100 , pp. 663-676
    • Page, R.W.1    Conor, C.H.H.2    Stevens, B.P.J.3    Gibson, G.M.4    Preiss, W.V.5    Southgate, P.N.6
  • 41
    • 15444371056 scopus 로고    scopus 로고
    • Geochronology of the sequence hosting the Broken Hill Pb-Zn-Ag orebody, Australia
    • Page R.W., Stevens B.P.J., Gibson G.M. Geochronology of the sequence hosting the Broken Hill Pb-Zn-Ag orebody, Australia. Econ. Geol. 2005, 100:633-661.
    • (2005) Econ. Geol. , vol.100 , pp. 633-661
    • Page, R.W.1    Stevens, B.P.J.2    Gibson, G.M.3
  • 42
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26:217-222.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 217-222
    • Pal, M.1
  • 43
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • American Association for Artificial Intelligence, Huntington Beach, CA
    • Provost F., Fawcett T. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD 97) 1997, 43-48. American Association for Artificial Intelligence, Huntington Beach, CA.
    • (1997) Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD 97) , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 46
    • 84857004904 scopus 로고    scopus 로고
    • Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image
    • Song X., Duan Z., Jiang X. Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image. Int. J. Remote Sens. 2012, 33:3301-3320.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 3301-3320
    • Song, X.1    Duan, Z.2    Jiang, X.3
  • 47
    • 0022843781 scopus 로고
    • Post-depositional history of the Willyama Supergroup in the Broken Hill Block, NSW
    • Stevens B.P.J. Post-depositional history of the Willyama Supergroup in the Broken Hill Block, NSW. Aust. J. Earth Sci. 1986, 33:73-98.
    • (1986) Aust. J. Earth Sci. , vol.33 , pp. 73-98
    • Stevens, B.P.J.1
  • 48
  • 50
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • Waske B., Braun M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64:450-457.
    • (2009) ISPRS J. Photogramm. Remote Sens. , vol.64 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 54
    • 0021026051 scopus 로고
    • The early proterozoic Willyama supergroup: stratigraphic subdivision and interpretation of high to low-grade metamorphic rocks in the Broken Hill Block, New South Wales
    • Willis I.L., Brown R.E., Stroud W.J., Stevens B.P.J. The early proterozoic Willyama supergroup: stratigraphic subdivision and interpretation of high to low-grade metamorphic rocks in the Broken Hill Block, New South Wales. J. Geol. Soc. Aust. 1983, 30:195-224.
    • (1983) J. Geol. Soc. Aust. , vol.30 , pp. 195-224
    • Willis, I.L.1    Brown, R.E.2    Stroud, W.J.3    Stevens, B.P.J.4
  • 56
    • 84863469677 scopus 로고    scopus 로고
    • Towards automatic lithological classification from remote sensing data using support vector machines
    • Yu L., Porwal A., Holden E.J., Dentith M.C. Towards automatic lithological classification from remote sensing data using support vector machines. Comput. Geosci. 2012, 45:229-239.
    • (2012) Comput. Geosci. , vol.45 , pp. 229-239
    • Yu, L.1    Porwal, A.2    Holden, E.J.3    Dentith, M.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.