-
1
-
-
84966251435
-
Joint measures and cross-covariance operators
-
Baker, C. Joint measures and cross-covariance operators. Trans. Amer. Math. Soc., 186:273-211, 1973.
-
(1973)
Trans. Amer. Math. Soc
, vol.186
, pp. 211-273
-
-
Baker, C.1
-
2
-
-
84898798212
-
Unsupervised domain adaptation by domain invariant projection
-
Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., and Salzmann, M. Unsupervised domain adaptation by domain invariant projection. In Computer Vision (ICCV), 2013 IEEE International Conference on, pp. 769-776, Dec 2013. doi:10.1109/ICCV.2013.100.
-
(2013)
Computer Vision (ICCV), 2013 IEEE International Conference on
, pp. 769-776
-
-
Baktashmotlagh, M.1
Harandi, M.T.2
Lovell, B.C.3
Salzmann, M.4
-
3
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Cambridge, MA, MIT Press
-
Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. Analysis of representations for domain adaptation. In Advances in Neural Information Processing Systems 20, Cambridge, MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.20
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
4
-
-
84897573740
-
A theory of learning from different domains
-
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. A theory of learning from different domains. Machine learning, 79(1-2): 151-175, 2010.
-
(2010)
Machine Learning
, vol.79
, Issue.1-2
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
5
-
-
85162073649
-
Learning bounds for importance weighting
-
Cortes, C., Mansour, Y., and Mohri, M. Learning bounds for importance weighting. In NIPS 23, 2010.
-
(2010)
NIPS
, vol.23
-
-
Cortes, C.1
Mansour, Y.2
Mohri, M.3
-
6
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
April
-
Edelman, A., Arias, T. A., and Smith, S. T. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl, 20(2):303-353, April 1999. ISSN 0895-4798.
-
(1999)
SIAM J. Matrix Anal. Appl
, vol.20
, Issue.2
, pp. 303-353
-
-
Edelman, A.1
Arias, T.A.2
Smith, S.T.3
-
7
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
Fukumizu, K., Bach, F. R., Jordan, M. I., and Williams, C. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
Williams, C.4
-
8
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
IEEE
-
Gong, B., Shi, Y., Sha, F., and Grauman, K. Geodesic flow kernel for unsupervised domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2066-2073. IEEE, 2012.
-
(2012)
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
9
-
-
84897476317
-
Connecting the dot-s with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
-
Gong, B., Grauman, K., and Sha, F. Connecting the dot-s with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In Proceedings of The 30th International Conference on Machine Learning, pp. 222-230, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 222-230
-
-
Gong, B.1
Grauman, K.2
Sha, F.3
-
10
-
-
84863396387
-
Domain adaptation for object recognition: An unsupervised approach
-
IEEE
-
Gopalan, R., Li, R., and Chellappa, R. Domain adaptation for object recognition: An unsupervised approach. In Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 999-1006. IEEE, 2011.
-
(2011)
Computer Vision (ICCV), 2011 IEEE International Conference on
, pp. 999-1006
-
-
Gopalan, R.1
Li, R.2
Chellappa, R.3
-
11
-
-
84859477054
-
A kernel two-sample test
-
Gretton, A., Borgwardt, K. M, Rasch, M. J., Scholkopf, B., and Smola, A. A kernel two-sample test. Journal of Machine Learning Research, 13:723-773, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Scholkopf, B.4
Smola, A.5
-
12
-
-
34948904828
-
Caltech-256 object category dataset
-
URL
-
Griffin, G., Holub, A., and Perona, P. Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology, 2007. URL http://authors.library.caltech.edu/7694.
-
(2007)
Technical Report 7694, California Institute of Technology
-
-
Griffin, G.1
Holub, A.2
Perona, P.3
-
13
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Huang, J., Smola, A., Gretton, A., Borgwardt, K., and Scholkopf, B. Correcting sample selection bias by unlabeled data. In NIPS 19, pp. 601-608, 2007.
-
(2007)
NIPS
, vol.19
, pp. 601-608
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.4
Scholkopf, B.5
-
17
-
-
84911456577
-
Transfer joint matching for unsupervised domain adaptation
-
IEEE
-
Long, M, Wang, J., Ding, G., Sun, J., and Yu, P. S. Transfer joint matching for unsupervised domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 1410-1417. IEEE, 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 1410-1417
-
-
Long, M.1
Wang, J.2
Ding, G.3
Sun, J.4
Yu, P.S.5
-
18
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
Blei, David and Bach, Francis (eds.), JMLR Workshop and Conference Proceedings, URL
-
Long, M., Cao, Y., Wang, J., and Jordan, M. Learning transferable features with deep adaptation networks. In Blei, David and Bach, Francis (eds.), Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 97-105. JMLR Workshop and Conference Proceedings, 2015. URL http://jmlr.org/proceedings/papers/v37/longl5.pdf.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 97-105
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.4
-
19
-
-
84905040895
-
Decomposition-based transfer distance metric learning for image classification
-
Sept
-
Luo, Y., Liu, T., Tao, D., and Xu, C. Decomposition-based transfer distance metric learning for image classification. IEEE Transactions on Image Processing, 23(9):3789-3801, Sept 2014. ISSN 1057-7149. doi:10.1109/TIP.2014.2332398.
-
(2014)
IEEE Transactions on Image Processing
, vol.23
, Issue.9
, pp. 3789-3801
-
-
Luo, Y.1
Liu, T.2
Tao, D.3
Xu, C.4
-
20
-
-
84998922748
-
-
arXiv:1507.05333, Feb
-
Mateo, R., Scholkopf, B., Turner, R and Peters, J. Causal transfer in machine learning. arXiv:1507.05333, Feb 2016.
-
(2016)
Causal Transfer in Machine Learning
-
-
Mateo, R.1
Scholkopf, B.2
Turner, R.3
Peters, J.4
-
21
-
-
84897517066
-
Domain generalization via invariant feature representation
-
JMLR: W&CP
-
Muandet, K., Balduzzi, D., and Scholkopf, B. Domain generalization via invariant feature representation. In Proceedings of the 30th International Conference on Machine Learning, JMLR: W&CP Vol. 28, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, vol.28
-
-
Muandet, K.1
Balduzzi, D.2
Scholkopf, B.3
-
23
-
-
79951681949
-
Domain adaptation via transfer component analysis
-
Pan, S. J., Tsang, I. W Kwok, J. T and Yang, Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22:199-120, 2011.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, pp. 120-199
-
-
Pan, S.J.1
Tsang, I.W.2
Kwok, J.T.3
Yang, Q.4
-
24
-
-
78149318752
-
Adapting visual category models to new domains
-
Springer
-
Saenko, K., Kulis, B., Fritz, M., and Darrell, T. Adapting visual category models to new domains. In Computer Vision-ECCV 2010, pp. 213-226. Springer, 2010.
-
(2010)
Computer Vision-ECCV 2010
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
25
-
-
84867113617
-
On causal and anticausal learning
-
Edinburgh, Scotland
-
Scholkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., and Mooij, J. On causal and anticausal learning. In Proc. 29th International Conference on Machine Learning (ICML 2012), Edinburgh, Scotland, 2012.
-
(2012)
Proc. 29th International Conference on Machine Learning (ICML 2012)
-
-
Scholkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.6
-
26
-
-
0037527188
-
Improving predictive inference under co-variate shift by weighting the log-likelihood function
-
Shimodaira, H. Improving predictive inference under co-variate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90:227-244, 2000.
-
(2000)
Journal of Statistical Planning and Inference
, vol.90
, pp. 227-244
-
-
Shimodaira, H.1
-
27
-
-
77952894864
-
Bregman divergence-based regularization for transfer subspace learning
-
July
-
Si, S., Tao, D., and Geng, B. Bregman divergence-based regularization for transfer subspace learning. Knowledge and Data Engineering, IEEE Transactions on, 22 (7):929-942, July 2010. ISSN 1041-4347. doi:10.1109/TKDE.2009.126.
-
(2010)
Knowledge and Data Engineering, IEEE Transactions on
, vol.22
, Issue.7
, pp. 929-942
-
-
Si, S.1
Tao, D.2
Geng, B.3
-
28
-
-
79960697913
-
Distribution calibration in riemannian symmetric space
-
Aug
-
Si, S, Liu, W., Tao, D., and Chan, K. P. Distribution calibration in riemannian symmetric space. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(4):921-930, Aug 2011. ISSN 1083-4419. doi:10.1109/TSMCB.2010.2100042.
-
(2011)
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
, vol.41
, Issue.4
, pp. 921-930
-
-
Si, S.1
Liu, W.2
Tao, D.3
Chan, K.P.4
-
29
-
-
38149136576
-
A Hilbert space embedding for distributions
-
Springer-Verlag
-
Smola, A., Gretton, A., Song, L., and Scholkopf, B. A Hilbert space embedding for distributions. In Proceedings of the 18th International Conference on Algorithmic Learning Theory, pp. 13-31. Springer-Verlag, 2007.
-
(2007)
Proceedings of the 18th International Conference on Algorithmic Learning Theory
, pp. 13-31
-
-
Smola, A.1
Gretton, A.2
Song, L.3
Scholkopf, B.4
-
30
-
-
80052235767
-
Universality, characteristic kernels and RKHS embedding of measures
-
Sriperumbudur, B., Fukumizu, K., and Lanckriet, G. U-niversality, characteristic kernels and rkhs embedding of measures. Journal of Machine Learning Research, 12: 2389-2410, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2389-2410
-
-
Sriperumbudur, B.1
Fukumizu, K.2
Lanckriet, G.3
-
31
-
-
55549114317
-
Direct importance estimation for covariate shift adaptation
-
Sugiyama, M, Suzuki, T., Nakajima, S., Kashima, H., von Biinau, P., and Kawanabe, M. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60:699-746, 2008.
-
(2008)
Annals of the Institute of Statistical Mathematics
, vol.60
, pp. 699-746
-
-
Sugiyama, M.1
Suzuki, T.2
Nakajima, S.3
Kashima, H.4
Von Biinau, P.5
Kawanabe, M.6
-
33
-
-
84893789401
-
Covariate shift in hilbert space: A solution via sorrogate kernels
-
Kai Zhang, Zheng, V., Wang, Q, Kwok, J., Yang, Q, and Marsic, I. Covariate shift in hilbert space: A solution via sorrogate kernels. In Proceedings of the 30th International Conference on Machine Learning, pp. 388-395, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 388-395
-
-
Kai, Z.1
Zheng, V.2
Wang, Q.3
Kwok, J.4
Yang, Q.5
Marsic, I.6
-
34
-
-
84897514005
-
Domain adaptation under target and conditional shift
-
J MLR: W&CP
-
Kun Zhang, Scholkopf, B., Muandet, K., and Wang, Z. Domain adaptation under target and conditional shift. In Proceedings of the 30th International Conference on Machine Learning, J MLR: W&CP Vol. 28, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, vol.28
-
-
Kun, Z.1
Scholkopf, B.2
Muandet, K.3
Wang, Z.4
|