메뉴 건너뛰기




Volumn 7, Issue 3, 2016, Pages 236-263

GetReal in network meta-analysis: a review of the methodology

Author keywords

comparing multiple interventions; indirect treatment comparison; mixed treatment comparison; multiple treatment meta analysis

Indexed keywords

PLACEBO;

EID: 84995758231     PISSN: None     EISSN: 17592887     Source Type: Journal    
DOI: 10.1002/jrsm.1195     Document Type: Article
Times cited : (265)

References (195)
  • 1
    • 84873420647 scopus 로고    scopus 로고
    • Extending methods for investigating the relationship between treatment effect and baseline risk from pairwise meta-analysis to network meta-analysis
    • Achana FA, Cooper NJ, Dias S, Lu G, Rice SJ, Kendrick D, Sutton AJ. 2013. Extending methods for investigating the relationship between treatment effect and baseline risk from pairwise meta-analysis to network meta-analysis. Statistics in Medicine 32: 752–771. DOI:10.1002/sim.5539.
    • (2013) Statistics in Medicine , vol.32 , pp. 752-771
    • Achana, F.A.1    Cooper, N.J.2    Dias, S.3    Lu, G.4    Rice, S.J.5    Kendrick, D.6    Sutton, A.J.7
  • 2
    • 0141481034 scopus 로고    scopus 로고
    • A chain of evidence with mixed comparisons: models for multi-parameter synthesis and consistency of evidence
    • Ades AE. 2003. A chain of evidence with mixed comparisons: models for multi-parameter synthesis and consistency of evidence. Statistics in Medicine 22: 2995–3016. DOI:10.1002/sim.1566.
    • (2003) Statistics in Medicine , vol.22 , pp. 2995-3016
    • Ades, A.E.1
  • 5
    • 33645089927 scopus 로고    scopus 로고
    • Multiparameter evidence synthesis in epidemiology and medical-decision making: current approaches
    • Ades AE, Sutton AJ. 2006. Multiparameter evidence synthesis in epidemiology and medical-decision making: current approaches. Journal of the Royal Statistical Society A 169: 5–35.
    • (2006) Journal of the Royal Statistical Society A , vol.169 , pp. 5-35
    • Ades, A.E.1    Sutton, A.J.2
  • 6
    • 84873470089 scopus 로고    scopus 로고
    • The use of individual patient-level data (IPD) to quantify the impact of pretreatment predictors of response to treatment in chronic hepatitis B patients
    • Ali S, Mealing S, Hawkins N, Lescrauwaet B, Bjork S, Mantovani L, Lampertico P. 2013. The use of individual patient-level data (IPD) to quantify the impact of pretreatment predictors of response to treatment in chronic hepatitis B patients. BMJ Open 3:. DOI:10.1136/bmjopen-2012-001309.
    • (2013) BMJ Open , vol.3
    • Ali, S.1    Mealing, S.2    Hawkins, N.3    Lescrauwaet, B.4    Bjork, S.5    Mantovani, L.6    Lampertico, P.7
  • 7
    • 84883203364 scopus 로고    scopus 로고
    • Analysis of the systematic reviews process in reports of network meta-analyses: methodological systematic review
    • Bafeta A, Trinquart L, Seror R, Ravaud P. 2013. Analysis of the systematic reviews process in reports of network meta-analyses: methodological systematic review. BMJ 347: f3675.
    • (2013) BMJ , vol.347 , pp. f3675
    • Bafeta, A.1    Trinquart, L.2    Seror, R.3    Ravaud, P.4
  • 8
    • 2642514351 scopus 로고    scopus 로고
    • The transitive fallacy for randomized trials: if A bests B and B bests C in separate trials, is A better than C?
    • Baker SG, Kramer BS. 2002. The transitive fallacy for randomized trials: if A bests B and B bests C in separate trials, is A better than C? BMC Medical Research Methodology 2: 13.
    • (2002) BMC Medical Research Methodology , vol.2 , pp. 13
    • Baker, S.G.1    Kramer, B.S.2
  • 9
    • 15444368303 scopus 로고    scopus 로고
    • Orphan comparisons and indirect meta-analysis: a case study on antidepressant efficacy in dysthymia comparing tricyclic antidepressants, selective serotonin reuptake inhibitors, and monoamine oxidase inhibitors by using general linear models
    • Ballesteros J. 2005. Orphan comparisons and indirect meta-analysis: a case study on antidepressant efficacy in dysthymia comparing tricyclic antidepressants, selective serotonin reuptake inhibitors, and monoamine oxidase inhibitors by using general linear models. Journal of Clinical Psychopharmacology 25: 127–131.
    • (2005) Journal of Clinical Psychopharmacology , vol.25 , pp. 127-131
    • Ballesteros, J.1
  • 10
  • 11
    • 0030793120 scopus 로고    scopus 로고
    • The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials
    • Bucher HC, Guyatt GH, Griffith LE, Walter SD. 1997. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. Journal of Clinical Epidemiology 50: 683–691.
    • (1997) Journal of Clinical Epidemiology , vol.50 , pp. 683-691
    • Bucher, H.C.1    Guyatt, G.H.2    Griffith, L.E.3    Walter, S.D.4
  • 12
    • 26944454062 scopus 로고    scopus 로고
    • Simultaneous comparison of multiple treatments: combining direct and indirect evidence
    • Caldwell DM, Ades AE, Higgins JPT. 2005. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ 331: 897–900. DOI:10.1136/bmj.331.7521.897.
    • (2005) BMJ , vol.331 , pp. 897-900
    • Caldwell, D.M.1    Ades, A.E.2    Higgins, J.P.T.3
  • 13
    • 77953688080 scopus 로고    scopus 로고
    • Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency
    • Caldwell DM, Welton NJ, Ades AE. 2010. Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency. Journal of Clinical Epidemiology 63: 875–882. DOI:10.1016/j.jclinepi.2009.08.025.
    • (2010) Journal of Clinical Epidemiology , vol.63 , pp. 875-882
    • Caldwell, D.M.1    Welton, N.J.2    Ades, A.E.3
  • 14
    • 84874115637 scopus 로고    scopus 로고
    • Selecting the best scale for measuring treatment effect in a network meta-analysis: a case study in childhood nocturnal enuresis
    • Caldwell DM, Welton NJ, Dias S, Ades AE. 2012. Selecting the best scale for measuring treatment effect in a network meta-analysis: a case study in childhood nocturnal enuresis. Research Synthesis Methods 3: 126–141.
    • (2012) Research Synthesis Methods , vol.3 , pp. 126-141
    • Caldwell, D.M.1    Welton, N.J.2    Dias, S.3    Ades, A.E.4
  • 17
    • 84880287328 scopus 로고    scopus 로고
    • Using network meta-analysis to evaluate the existence of small-study effects in a network of interventions
    • Chaimani A, Salanti G. 2012. Using network meta-analysis to evaluate the existence of small-study effects in a network of interventions. Research Synthesis Methods 3: 161–176.
    • (2012) Research Synthesis Methods , vol.3 , pp. 161-176
    • Chaimani, A.1    Salanti, G.2
  • 19
    • 58149130293 scopus 로고    scopus 로고
    • Graphical exploration of network meta-analysis data: the use of multidimensional scaling
    • Chung H, Lumley T. 2008. Graphical exploration of network meta-analysis data: the use of multidimensional scaling. Clinical Trials 5: 301–307. DOI:10.1177/1740774508093614.
    • (2008) Clinical Trials , vol.5 , pp. 301-307
    • Chung, H.1    Lumley, T.2
  • 21
    • 84880316644 scopus 로고    scopus 로고
    • Conceptual and technical challenges in network meta-analysis
    • Cipriani A, Higgins JPT, Geddes JR, Salanti G. 2013. Conceptual and technical challenges in network meta-analysis. Annals of Internal Medicine 159: 130–137. DOI:10.7326/0003-4819-159-2-201307160-00008.
    • (2013) Annals of Internal Medicine , vol.159 , pp. 130-137
    • Cipriani, A.1    Higgins, J.P.T.2    Geddes, J.R.3    Salanti, G.4
  • 24
    • 69949092149 scopus 로고    scopus 로고
    • Addressing between-study heterogeneity and inconsistency in mixed treatment comparisons: application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation
    • Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ. 2009. Addressing between-study heterogeneity and inconsistency in mixed treatment comparisons: application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation. Statistics in Medicine 28: 1861–1881. DOI:10.1002/sim.3594.
    • (2009) Statistics in Medicine , vol.28 , pp. 1861-1881
    • Cooper, N.J.1    Sutton, A.J.2    Morris, D.3    Ades, A.E.4    Welton, N.J.5
  • 25
    • 77956232863 scopus 로고    scopus 로고
    • Frequency of treatment-effect modification affecting indirect comparisons: a systematic review
    • Coory M, Jordan S. 2010. Frequency of treatment-effect modification affecting indirect comparisons: a systematic review. PharmacoEconomics 28: 723–732. DOI:10.2165/11535670-000000000-00000.
    • (2010) PharmacoEconomics , vol.28 , pp. 723-732
    • Coory, M.1    Jordan, S.2
  • 27
    • 84888347443 scopus 로고    scopus 로고
    • Quantitative summaries of treatment effect estimates obtained with network meta-analysis of survival curves to inform decision-making
    • Cope S, Jansen JP. 2013. Quantitative summaries of treatment effect estimates obtained with network meta-analysis of survival curves to inform decision-making. BMC Medical Research Methodology 13: 147. DOI:10.1186/1471-2288-13-147.
    • (2013) BMC Medical Research Methodology , vol.13 , pp. 147
    • Cope, S.1    Jansen, J.P.2
  • 29
    • 80051799668 scopus 로고    scopus 로고
    • Mixed treatment comparison of repeated measurements of a continuous endpoint: an example using topical treatments for primary open-angle glaucoma and ocular hypertension
    • Dakin HA, Welton NJ, Ades AE, Collins S, Orme M, Kelly S. 2011. Mixed treatment comparison of repeated measurements of a continuous endpoint: an example using topical treatments for primary open-angle glaucoma and ocular hypertension. Statistics in Medicine. DOI:10.1002/sim.4284.
    • (2011) Statistics in Medicine
    • Dakin, H.A.1    Welton, N.J.2    Ades, A.E.3    Collins, S.4    Orme, M.5    Kelly, S.6
  • 30
    • 84892601641 scopus 로고    scopus 로고
    • Network meta-analyses: the “white whale” for cardiovascular specialists
    • D'Ascenzo F, Biondi-Zoccai G. 2014. Network meta-analyses: the “white whale” for cardiovascular specialists. Journal of Cardiothoracic and Vascular Anesthesia 28: 169–173. DOI:10.1053/j.jvca.2013.01.004.
    • (2014) Journal of Cardiothoracic and Vascular Anesthesia , vol.28 , pp. 169-173
    • D'Ascenzo, F.1    Biondi-Zoccai, G.2
  • 32
    • 0037098201 scopus 로고    scopus 로고
    • Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes
    • Deeks JJ. 2002. Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Statistics in Medicine 21: 1575–1600. DOI:10.1002/sim.1188.
    • (2002) Statistics in Medicine , vol.21 , pp. 1575-1600
    • Deeks, J.J.1
  • 33
    • 84870924535 scopus 로고    scopus 로고
    • Network meta-analysis models to account for variability in treatment definitions: application to dose effects
    • Del Giovane C, Vacchi L, Mavridis D, Filippini G, Salanti G. 2013. Network meta-analysis models to account for variability in treatment definitions: application to dose effects. Statistics in Medicine 32: 25–39. DOI:10.1002/sim.5512.
    • (2013) Statistics in Medicine , vol.32 , pp. 25-39
    • Del Giovane, C.1    Vacchi, L.2    Mavridis, D.3    Filippini, G.4    Salanti, G.5
  • 34
    • 84862880722 scopus 로고    scopus 로고
    • Investigating incoherence gives insight: clopidogrel is equivalent to extended-release dipyridamole plus aspirin in secondary stroke prevention
    • Dewilde S, Hawkins N. 2012. Investigating incoherence gives insight: clopidogrel is equivalent to extended-release dipyridamole plus aspirin in secondary stroke prevention. Journal of Clinical Epidemiology 65: 835–845. DOI:10.1016/j.jclinepi.2012.01.019.
    • (2012) Journal of Clinical Epidemiology , vol.65 , pp. 835-845
    • Dewilde, S.1    Hawkins, N.2
  • 35
    • 84879740382 scopus 로고    scopus 로고
    • Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials
    • Dias S, Sutton AJ, Ades AE, Welton NJ. 2013a. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Medical Decision Making International Journal of Society Medical and Decision Making 33: 607–617. DOI:10.1177/0272989X12458724.
    • (2013) Medical Decision Making International Journal of Society Medical and Decision Making , vol.33 , pp. 607-617
    • Dias, S.1    Sutton, A.J.2    Ades, A.E.3    Welton, N.J.4
  • 36
    • 84879772042 scopus 로고    scopus 로고
    • Evidence synthesis for decision making 3: heterogeneity – subgroups, meta-regression, bias, and bias-adjustment
    • Dias S, Sutton AJ, Welton NJ, Ades AE. 2013b. Evidence synthesis for decision making 3: heterogeneity – subgroups, meta-regression, bias, and bias-adjustment. Medical Decision Making 33: 618–640. DOI:10.1177/0272989X13485157.
    • (2013) Medical Decision Making , vol.33 , pp. 618-640
    • Dias, S.1    Sutton, A.J.2    Welton, N.J.3    Ades, A.E.4
  • 37
    • 77956626099 scopus 로고    scopus 로고
    • Study designs to detect sponsorship and other biases in systematic reviews
    • Dias S, Welton NJ, Ades AE. 2010a. Study designs to detect sponsorship and other biases in systematic reviews. Journal of Clinical Epidemiology 63: 587–588. DOI:10.1016/j.jclinepi.2010.01.005.
    • (2010) Journal of Clinical Epidemiology , vol.63 , pp. 587-588
    • Dias, S.1    Welton, N.J.2    Ades, A.E.3
  • 38
    • 77949420042 scopus 로고    scopus 로고
    • Checking consistency in mixed treatment comparison meta-analysis
    • Dias S, Welton NJ, Caldwell DM, Ades AE. 2010b. Checking consistency in mixed treatment comparison meta-analysis. Statistics in Medicine 29: 932–944. DOI:10.1002/sim.3767.
    • (2010) Statistics in Medicine , vol.29 , pp. 932-944
    • Dias, S.1    Welton, N.J.2    Caldwell, D.M.3    Ades, A.E.4
  • 40
    • 84879774468 scopus 로고    scopus 로고
    • Evidence synthesis for decision making 5: the baseline natural history model
    • Dias S, Welton NJ, Sutton AJ, Ades AE. 2013c. Evidence synthesis for decision making 5: the baseline natural history model. Medical Decision Making 33: 657–670. DOI:10.1177/0272989X13485155.
    • (2013) Medical Decision Making , vol.33 , pp. 657-670
    • Dias, S.1    Welton, N.J.2    Sutton, A.J.3    Ades, A.E.4
  • 41
    • 84879754189 scopus 로고    scopus 로고
    • Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials
    • Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE. 2013d. Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials. Medical Decision Making 33: 641–656. DOI:10.1177/0272989X12455847.
    • (2013) Medical Decision Making , vol.33 , pp. 641-656
    • Dias, S.1    Welton, N.J.2    Sutton, A.J.3    Caldwell, D.M.4    Lu, G.5    Ades, A.E.6
  • 42
    • 84879096038 scopus 로고    scopus 로고
    • Bayesian indirect and mixed treatment comparisons across longitudinal time points
    • Ding Y, Fu H. 2012. Bayesian indirect and mixed treatment comparisons across longitudinal time points. Statistics in Medicine. DOI:10.1002/sim.5688.
    • (2012) Statistics in Medicine
    • Ding, Y.1    Fu, H.2
  • 43
    • 84873978476 scopus 로고    scopus 로고
    • Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials
    • Donegan S, Williamson P, D'Alessandro U, Garner P, Tudur Smith C. 2013a. Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials. Statistics in Medicine 32: 914–930. DOI:10.1002/sim.5584.
    • (2013) Statistics in Medicine , vol.32 , pp. 914-930
    • Donegan, S.1    Williamson, P.2    D'Alessandro, U.3    Garner, P.4    Tudur Smith, C.5
  • 45
    • 84870064743 scopus 로고    scopus 로고
    • Assessing the consistency assumption by exploring treatment by covariate interactions in mixed treatment comparison meta-analysis: individual patient-level covariates versus aggregate trial-level covariates
    • Donegan S, Williamson P, D'Alessandro U, Tudur Smith C. 2012. Assessing the consistency assumption by exploring treatment by covariate interactions in mixed treatment comparison meta-analysis: individual patient-level covariates versus aggregate trial-level covariates. Statistics in Medicine 31: 3840–3857. DOI:10.1002/sim.5470.
    • (2012) Statistics in Medicine , vol.31 , pp. 3840-3857
    • Donegan, S.1    Williamson, P.2    D'Alessandro, U.3    Tudur Smith, C.4
  • 46
    • 78649754570 scopus 로고    scopus 로고
    • Indirect comparisons: a review of reporting and methodological quality
    • Donegan S, Williamson P, Gamble C, Tudur SC. 2010. Indirect comparisons: a review of reporting and methodological quality. PLoS One 5: e11054. DOI:10.1371/journal.pone.0011054.
    • (2010) PLoS One , vol.5
    • Donegan, S.1    Williamson, P.2    Gamble, C.3    Tudur, S.C.4
  • 47
    • 69749100189 scopus 로고    scopus 로고
    • Indirect comparison: relative risk fallacies and odds solution
    • Eckermann S, Coory M, Willan AR. 2009. Indirect comparison: relative risk fallacies and odds solution. Journal of Clinical Epidemiology 62: 1031–1036. DOI:10.1016/j.jclinepi.2008.10.013.
    • (2009) Journal of Clinical Epidemiology , vol.62 , pp. 1031-1036
    • Eckermann, S.1    Coory, M.2    Willan, A.R.3
  • 49
    • 65649139056 scopus 로고    scopus 로고
    • Indirect comparisons of treatments based on systematic reviews of randomised controlled trials
    • Edwards SJ, Clarke MJ, Wordsworth S, Borrill J. 2009. Indirect comparisons of treatments based on systematic reviews of randomised controlled trials. International Journal of Clinical Practice 63: 841–854. DOI:10.1111/j.1742-1241.2009.02072.x.
    • (2009) International Journal of Clinical Practice , vol.63 , pp. 841-854
    • Edwards, S.J.1    Clarke, M.J.2    Wordsworth, S.3    Borrill, J.4
  • 50
    • 84899926019 scopus 로고    scopus 로고
    • An approach for modelling multiple correlated outcomes in a network of interventions using odds ratios
    • Efthimiou O, Mavridis D, Cipriani A, Leucht S, Bagos P, Salanti G. 2014a. An approach for modelling multiple correlated outcomes in a network of interventions using odds ratios. Statistics in Medicine 33: 2275–2287. DOI:10.1002/sim.6117.
    • (2014) Statistics in Medicine , vol.33 , pp. 2275-2287
    • Efthimiou, O.1    Mavridis, D.2    Cipriani, A.3    Leucht, S.4    Bagos, P.5    Salanti, G.6
  • 52
    • 0030720013 scopus 로고    scopus 로고
    • Meta-analysis: principles and procedures
    • Egger M, Smith GD, Phillips AN. 1997. Meta-analysis: principles and procedures. BMJ 315: 1533–1537. DOI:10.1136/bmj.315.7121.1533.
    • (1997) BMJ , vol.315 , pp. 1533-1537
    • Egger, M.1    Smith, G.D.2    Phillips, A.N.3
  • 53
    • 84994423544 scopus 로고    scopus 로고
    • Availabl
    • EUnetHTA – European network for Health Technology Assessment (last). 2013. Comparators and comparisons: Direct and indirect comparisons. Available http://www.eunethta.eu/sites/5026.fedimbo.belgium.be/files/Direct%20and%20indirect%20comparisons.pdf
    • (2013) Comparators and comparisons: Direct and indirect comparisons
  • 54
    • 79953193435 scopus 로고    scopus 로고
    • Results can be summarised in a simple figure
    • Fadda V, Maratea D, Trippoli S, Messori A. 2011. Results can be summarised in a simple figure. BMJ 342: d1555–d1555. DOI:10.1136/bmj.d1555.
    • (2011) BMJ , vol.342 , pp. d1555
    • Fadda, V.1    Maratea, D.2    Trippoli, S.3    Messori, A.4
  • 55
    • 69049096557 scopus 로고    scopus 로고
    • Real medical benefit assessed by indirect comparison
    • Falissard B, Zylberman M, Cucherat M, Izard V, Meyer F. 2009. Real medical benefit assessed by indirect comparison. Thérapie 64: 225–232. DOI:10.2515/therapie/2009032.
    • (2009) Thérapie , vol.64 , pp. 225-232
    • Falissard, B.1    Zylberman, M.2    Cucherat, M.3    Izard, V.4    Meyer, F.5
  • 58
    • 84870061584 scopus 로고    scopus 로고
    • Multivariate meta-analysis for non-linear and other multi-parameter associations
    • Gasparrini A, Armstrong B, Kenward MG. 2012. Multivariate meta-analysis for non-linear and other multi-parameter associations. Statistics in Medicine 31: 3821–3839. DOI:10.1002/sim.5471.
    • (2012) Statistics in Medicine , vol.31 , pp. 3821-3839
    • Gasparrini, A.1    Armstrong, B.2    Kenward, M.G.3
  • 61
    • 77952844629 scopus 로고    scopus 로고
    • Controlling ecological bias in evidence synthesis of trials reporting on collapsed and overlapping covariate categories
    • Govan L, Ades AE, Weir CJ, Welton NJ, Langhorne P. 2010. Controlling ecological bias in evidence synthesis of trials reporting on collapsed and overlapping covariate categories. Statistics in Medicine 29: 1340–1356. DOI:10.1002/sim.3869.
    • (2010) Statistics in Medicine , vol.29 , pp. 1340-1356
    • Govan, L.1    Ades, A.E.2    Weir, C.J.3    Welton, N.J.4    Langhorne, P.5
  • 64
    • 0037361638 scopus 로고    scopus 로고
    • The impact of prior distributions for uncontrolled confounding and response bias: a case study of the relation of wire codes and magnetic fields to childhood leukemia
    • Greenland S. 2003. The impact of prior distributions for uncontrolled confounding and response bias: a case study of the relation of wire codes and magnetic fields to childhood leukemia. Journal of the American Statistical Association 98: 47–54.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 47-54
    • Greenland, S.1
  • 65
    • 33646461154 scopus 로고    scopus 로고
    • Incorporating direct and indirect evidence using Bayesian methods: an applied case study in ovarian cancer
    • Griffin S, Bojke L, Main C, Palmer S. 2006. Incorporating direct and indirect evidence using Bayesian methods: an applied case study in ovarian cancer. Value in Health 9: 123–131. DOI:10.1111/j.1524-4733.2006.00090.x.
    • (2006) Value in Health , vol.9 , pp. 123-131
    • Griffin, S.1    Bojke, L.2    Main, C.3    Palmer, S.4
  • 66
    • 67649238823 scopus 로고    scopus 로고
    • How far do you go? Efficient searching for indirect evidence
    • Hawkins N, Scott DA, Woods B. 2009a. How far do you go? Efficient searching for indirect evidence. Medical Decision Making 29: 273–281. DOI:10.1177/0272989X08330120.
    • (2009) Medical Decision Making , vol.29 , pp. 273-281
    • Hawkins, N.1    Scott, D.A.2    Woods, B.3
  • 67
    • 67651208796 scopus 로고    scopus 로고
    • No study left behind: a network meta-analysis in non-small-cell lung cancer demonstrating the importance of considering all relevant data
    • Hawkins N, Scott DA, Woods BS, Thatcher N. 2009b. No study left behind: a network meta-analysis in non-small-cell lung cancer demonstrating the importance of considering all relevant data. Value in Health 12: 996–1003. DOI:10.1111/j.1524-4733.2009.00541.x.
    • (2009) Value in Health , vol.12 , pp. 996-1003
    • Hawkins, N.1    Scott, D.A.2    Woods, B.S.3    Thatcher, N.4
  • 69
    • 0030463880 scopus 로고    scopus 로고
    • Borrowing strength from external trials in a meta-analysis
    • Higgins JPT, Whitehead A. 1996. Borrowing strength from external trials in a meta-analysis. Statistics in Medicine 15: 2733–2749. DOI:10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0.
    • (1996) Statistics in Medicine , vol.15 , pp. 2733-2749
    • Higgins, J.P.T.1    Whitehead, A.2
  • 70
    • 79959960493 scopus 로고    scopus 로고
    • Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2
    • Hoaglin DC, Hawkins N, Jansen JP, Scott DA, Itzler R, Cappelleri JC, Boersma C, Thompson D, Larholt KM, Diaz M, Barrett A. 2011. Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2. Value in Health 14: 429–437. DOI:10.1016/j.jval.2011.01.011.
    • (2011) Value in Health , vol.14 , pp. 429-437
    • Hoaglin, D.C.1    Hawkins, N.2    Jansen, J.P.3    Scott, D.A.4    Itzler, R.5    Cappelleri, J.C.6    Boersma, C.7    Thompson, D.8    Larholt, K.M.9    Diaz, M.10    Barrett, A.11
  • 71
    • 84995807829 scopus 로고    scopus 로고
    • A Bayesian missing data framework for multiple continuous outcome mixed treatment comparisons
    • In, Rockville (MD), Agency for Healthcare Research and Quality (US
    • Hong H, Carlin BP, Chu H, Shamliyan TA, Wang S, Kane RL. 2013a. A Bayesian missing data framework for multiple continuous outcome mixed treatment comparisons. In AHRQ Methods for Effective Health Care. Rockville (MD): Agency for Healthcare Research and Quality (US).
    • (2013) AHRQ Methods for Effective Health Care
    • Hong, H.1    Carlin, B.P.2    Chu, H.3    Shamliyan, T.A.4    Wang, S.5    Kane, R.L.6
  • 73
    • 70350214788 scopus 로고    scopus 로고
    • Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses
    • Ioannidis JP. 2009. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ 181: 488–493. DOI:10.1503/cmaj.081086.
    • (2009) CMAJ , vol.181 , pp. 488-493
    • Ioannidis, J.P.1
  • 74
    • 33750339712 scopus 로고    scopus 로고
    • Indirect comparisons: the mesh and mess of clinical trials
    • Ioannidis JP. 2006. Indirect comparisons: the mesh and mess of clinical trials. Lancet 368: 1470–1472. DOI:10.1016/S0140-6736(06)69615-3.
    • (2006) Lancet , vol.368 , pp. 1470-1472
    • Ioannidis, J.P.1
  • 75
    • 84905565481 scopus 로고    scopus 로고
    • A design-by-treatment interaction model for network meta-analysis with random inconsistency effects
    • Jackson D, Barrett JK, Rice S, White IR, Higgins JPT. 2014. A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Statistics in Medicine 33: 3639–3654. DOI:10.1002/sim.6188.
    • (2014) Statistics in Medicine , vol.33 , pp. 3639-3654
    • Jackson, D.1    Barrett, J.K.2    Rice, S.3    White, I.R.4    Higgins, J.P.T.5
  • 76
    • 80051781370 scopus 로고    scopus 로고
    • Multivariate meta-analysis: potential and promise
    • Jackson D, Riley R, White IR. 2011. Multivariate meta-analysis: potential and promise. Statistics in Medicine 30: 2481–2498. DOI:10.1002/sim.4172.
    • (2011) Statistics in Medicine , vol.30 , pp. 2481-2498
    • Jackson, D.1    Riley, R.2    White, I.R.3
  • 77
    • 77952828976 scopus 로고    scopus 로고
    • Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses
    • Jackson D, White IR, Thompson SG. 2010. Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses. Statistics in Medicine 29: 1282–1297. DOI:10.1002/sim.3602.
    • (2010) Statistics in Medicine , vol.29 , pp. 1282-1297
    • Jackson, D.1    White, I.R.2    Thompson, S.G.3
  • 78
    • 84873707843 scopus 로고    scopus 로고
    • Network meta-analysis of individual and aggregate level data
    • Jansen JP. 2012. Network meta-analysis of individual and aggregate level data. Research Synthesis Methods 3: 177–190.
    • (2012) Research Synthesis Methods , vol.3 , pp. 177-190
    • Jansen, J.P.1
  • 79
    • 79955660223 scopus 로고    scopus 로고
    • Network meta-analysis of survival data with fractional polynomials
    • Jansen JP. 2011. Network meta-analysis of survival data with fractional polynomials. BMC Medical Research Methodology 11: 61. DOI:10.1186/1471-2288-11-61.
    • (2011) BMC Medical Research Methodology , vol.11 , pp. 61
    • Jansen, J.P.1
  • 80
    • 84867059257 scopus 로고    scopus 로고
    • Meta-regression models to address heterogeneity and inconsistency in network meta-analysis of survival outcomes
    • Jansen JP, Cope S. 2012. Meta-regression models to address heterogeneity and inconsistency in network meta-analysis of survival outcomes. BMC Medical Research Methodology 12: 152. DOI:10.1186/1471-2288-12-152.
    • (2012) BMC Medical Research Methodology , vol.12 , pp. 152
    • Jansen, J.P.1    Cope, S.2
  • 81
    • 52649100566 scopus 로고    scopus 로고
    • Bayesian meta-analysis of multiple treatment comparisons: an introduction to mixed treatment comparisons
    • Jansen JP, Crawford B, Bergman G, Stam W. 2008. Bayesian meta-analysis of multiple treatment comparisons: an introduction to mixed treatment comparisons. Value in Health 11: 956–964. DOI:10.1111/j.1524-4733.2008.00347.x.
    • (2008) Value in Health , vol.11 , pp. 956-964
    • Jansen, J.P.1    Crawford, B.2    Bergman, G.3    Stam, W.4
  • 83
    • 79959925787 scopus 로고    scopus 로고
    • Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1
    • Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, Lee K, Boersma C, Annemans L, Cappelleri JC. 2011b. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value in Health 14: 417–428. DOI:10.1016/j.jval.2011.04.002.
    • (2011) Value in Health , vol.14 , pp. 417-428
    • Jansen, J.P.1    Fleurence, R.2    Devine, B.3    Itzler, R.4    Barrett, A.5    Hawkins, N.6    Lee, K.7    Boersma, C.8    Annemans, L.9    Cappelleri, J.C.10
  • 84
    • 84879818084 scopus 로고    scopus 로고
    • Is network meta-analysis as valid as standard pairwise meta-analysis? It all depends on the distribution of effect modifiers
    • Jansen JP, Naci H. 2013. Is network meta-analysis as valid as standard pairwise meta-analysis? It all depends on the distribution of effect modifiers. BMC Medicine 11: 159. DOI:10.1186/1741-7015-11-159.
    • (2013) BMC Medicine , vol.11 , pp. 159
    • Jansen, J.P.1    Naci, H.2
  • 85
    • 84861583031 scopus 로고    scopus 로고
    • Directed acyclic graphs can help understand bias in indirect and mixed treatment comparisons
    • Jansen JP, Schmid CH, Salanti G. 2012. Directed acyclic graphs can help understand bias in indirect and mixed treatment comparisons. Journal of Clinical Epidemiology 65: 798–807. DOI:10.1016/j.jclinepi.2012.01.002.
    • (2012) Journal of Clinical Epidemiology , vol.65 , pp. 798-807
    • Jansen, J.P.1    Schmid, C.H.2    Salanti, G.3
  • 88
    • 57449091085 scopus 로고    scopus 로고
    • How biased are indirect comparisons, particularly when comparisons are made over time in controlled trials
    • Julious SA, Wang SJ. 2008. How biased are indirect comparisons, particularly when comparisons are made over time in controlled trials. Drug Information Journal 42: 625.
    • (2008) Drug Information Journal , vol.42 , pp. 625
    • Julious, S.A.1    Wang, S.J.2
  • 89
    • 84865295846 scopus 로고    scopus 로고
    • A multivariate meta-analysis approach for reducing the impact of outcome reporting bias in systematic reviews
    • Kirkham JJ, Riley RD, Williamson PR. 2012. A multivariate meta-analysis approach for reducing the impact of outcome reporting bias in systematic reviews. Statistics in Medicine 31: 2179–2195. DOI:10.1002/sim.5356.
    • (2012) Statistics in Medicine , vol.31 , pp. 2179-2195
    • Kirkham, J.J.1    Riley, R.D.2    Williamson, P.R.3
  • 91
    • 84874724764 scopus 로고    scopus 로고
    • A graphical tool for locating inconsistency in network meta-analyses
    • Krahn U, Binder H, Konig J. 2013. A graphical tool for locating inconsistency in network meta-analyses. BMC Medical Research Methodology 13: 35. DOI:10.1186/1471-2288-13-35.
    • (2013) BMC Medical Research Methodology , vol.13 , pp. 35
    • Krahn, U.1    Binder, H.2    Konig, J.3
  • 92
    • 84891628307 scopus 로고    scopus 로고
    • Review of mixed treatment comparisons in published systematic reviews shows marked increase since 2009
    • Lee AW. 2013. Review of mixed treatment comparisons in published systematic reviews shows marked increase since 2009. Journal of Clinical Epidemiology. DOI:10.1016/j.jclinepi.2013.07.014.
    • (2013) Journal of Clinical Epidemiology
    • Lee, A.W.1
  • 94
    • 79959536051 scopus 로고    scopus 로고
    • Network meta-analysis-highly attractive but more methodological research is needed
    • Li T, Puhan MA, Vedula SS, Singh S, Dickersin K, The Ad Hoc Network Meta-analysis Methods Meeting Working Group. 2011. Network meta-analysis-highly attractive but more methodological research is needed. BMC Medicine 9: 79. DOI:10.1186/1741-7015-9-79.
    • (2011) BMC Medicine , vol.9 , pp. 79
    • Li, T.1    Puhan, M.A.2    Vedula, S.S.3    Singh, S.4    Dickersin, K.5
  • 95
    • 74349083543 scopus 로고    scopus 로고
    • Modeling between-trial variance structure in mixed treatment comparisons
    • Lu G, Ades A. 2009. Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics 10: 792–805. DOI:10.1093/biostatistics/kxp032.
    • (2009) Biostatistics , vol.10 , pp. 792-805
    • Lu, G.1    Ades, A.2
  • 96
    • 33745663057 scopus 로고    scopus 로고
    • Assessing evidence inconsistency in mixed treatment comparisons
    • Lu G, Ades AE. 2006. Assessing evidence inconsistency in mixed treatment comparisons. Journal of the American Statistical Association 101: 447–459.
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 447-459
    • Lu, G.1    Ades, A.E.2
  • 97
    • 5044221416 scopus 로고    scopus 로고
    • Combination of direct and indirect evidence in mixed treatment comparisons
    • Lu G, Ades AE. 2004. Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine 23: 3105–3124. DOI:10.1002/sim.1875.
    • (2004) Statistics in Medicine , vol.23 , pp. 3105-3124
    • Lu, G.1    Ades, A.E.2
  • 100
    • 0037199837 scopus 로고    scopus 로고
    • Network meta-analysis for indirect treatment comparisons
    • Lumley T. 2002. Network meta-analysis for indirect treatment comparisons. Statistics in Medicine 21: 2313–2324. DOI:10.1002/sim.1201.
    • (2002) Statistics in Medicine , vol.21 , pp. 2313-2324
    • Lumley, T.1
  • 101
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn DJ, Thomas A, Best N, Spiegelhalter D. 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325–337. DOI:10.1023/A:1008929526011.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 102
    • 70449411807 scopus 로고    scopus 로고
    • The BUGS project: evolution, critique and future directions
    • Lunn D, Spiegelhalter D, Thomas A, Best N. 2009. The BUGS project: evolution, critique and future directions. Statistics in Medicine 28: 3049–3067. DOI:10.1002/sim.3680.
    • (2009) Statistics in Medicine , vol.28 , pp. 3049-3067
    • Lunn, D.1    Spiegelhalter, D.2    Thomas, A.3    Best, N.4
  • 103
    • 84891903079 scopus 로고    scopus 로고
    • Synthesis of evidence on heterogeneous interventions with multiple outcomes recorded over multiple follow-up times reported inconsistently: a smoking cessation case-study
    • Madan J, Chen Y-F, Aveyard P, Wang D, Yahaya I, Munafo M, Bauld L, Welton N. 2014. Synthesis of evidence on heterogeneous interventions with multiple outcomes recorded over multiple follow-up times reported inconsistently: a smoking cessation case-study. Journal of the Royal Statistical Society: Series A Statistic Society 177: 295–314. DOI:10.1111/rssa.12018.
    • (2014) Journal of the Royal Statistical Society: Series A Statistic Society , vol.177 , pp. 295-314
    • Madan, J.1    Chen, Y.-F.2    Aveyard, P.3    Wang, D.4    Yahaya, I.5    Munafo, M.6    Bauld, L.7    Welton, N.8
  • 104
    • 80052708232 scopus 로고    scopus 로고
    • Consistency between direct and indirect trial evidence: is direct evidence always more reliable?
    • Madan J, Stevenson MD, Cooper KL, Ades AE, Whyte S, Akehurst R. 2011. Consistency between direct and indirect trial evidence: is direct evidence always more reliable? Value in Health 14: 953–960. DOI:10.1016/j.jval.2011.05.042.
    • (2011) Value in Health , vol.14 , pp. 953-960
    • Madan, J.1    Stevenson, M.D.2    Cooper, K.L.3    Ades, A.E.4    Whyte, S.5    Akehurst, R.6
  • 105
    • 37349059264 scopus 로고    scopus 로고
    • Using indirect comparisons in pharmacoeconomic studies – time for implementation
    • Malone DC. 2007. Using indirect comparisons in pharmacoeconomic studies – time for implementation. Clinical Therapeutics 29: 2454–2455. DOI:10.1016/j.clinthera.2007.11.011.
    • (2007) Clinical Therapeutics , vol.29 , pp. 2454-2455
    • Malone, D.C.1
  • 106
    • 84876708207 scopus 로고    scopus 로고
    • A practical introduction to multivariate meta-analysis
    • Mavridis D, Salanti G. 2013. A practical introduction to multivariate meta-analysis. Statistical Methods in Medical Research 22: 133–158. DOI:10.1177/0962280211432219.
    • (2013) Statistical Methods in Medical Research , vol.22 , pp. 133-158
    • Mavridis, D.1    Salanti, G.2
  • 107
    • 84870924229 scopus 로고    scopus 로고
    • A fully Bayesian application of the Copas selection model for publication bias extended to network meta-analysis
    • Mavridis D, Sutton A, Cipriani A, Salanti G. 2013. A fully Bayesian application of the Copas selection model for publication bias extended to network meta-analysis. Statistics in Medicine 32: 51–66. DOI:10.1002/sim.5494.
    • (2013) Statistics in Medicine , vol.32 , pp. 51-66
    • Mavridis, D.1    Sutton, A.2    Cipriani, A.3    Salanti, G.4
  • 109
    • 79251606423 scopus 로고    scopus 로고
    • Estimating the power of indirect comparisons: a simulation study
    • Mills EJ, Ghement I, O'Regan C, Thorlund K. 2011b. Estimating the power of indirect comparisons: a simulation study. PLoS One 6: e16237. DOI:10.1371/journal.pone.0016237.
    • (2011) PLoS One , vol.6
    • Mills, E.J.1    Ghement, I.2    O'Regan, C.3    Thorlund, K.4
  • 110
    • 84866554883 scopus 로고    scopus 로고
    • How to use an article reporting a multiple treatment comparison meta-analysis
    • Mills EJ, Ioannidis JP, Thorlund K, Schunemann HJ, Puhan MA, Guyatt GH. 2012a. How to use an article reporting a multiple treatment comparison meta-analysis. JAMA 308: 1246–1253. DOI:10.1001/2012.jama.11228.
    • (2012) JAMA , vol.308 , pp. 1246-1253
    • Mills, E.J.1    Ioannidis, J.P.2    Thorlund, K.3    Schunemann, H.J.4    Puhan, M.A.5    Guyatt, G.H.6
  • 112
    • 84880165113 scopus 로고    scopus 로고
    • Demystifying trial networks and network meta-analysis
    • Mills EJ, Thorlund K, Ioannidis JP. 2013b. Demystifying trial networks and network meta-analysis. BMJ 346: f2914.
    • (2013) BMJ , vol.346 , pp. f2914
    • Mills, E.J.1    Thorlund, K.2    Ioannidis, J.P.3
  • 113
    • 84867886888 scopus 로고    scopus 로고
    • Calculating additive treatment effects from multiple randomized trials provides useful estimates of combination therapies
    • Mills EJ, Thorlund K, Ioannidis JP. 2012b. Calculating additive treatment effects from multiple randomized trials provides useful estimates of combination therapies. Journal of Clinical Epidemiology 65: 1282–1288. DOI:10.1016/j.jclinepi.2012.07.012.
    • (2012) Journal of Clinical Epidemiology , vol.65 , pp. 1282-1288
    • Mills, E.J.1    Thorlund, K.2    Ioannidis, J.P.3
  • 114
    • 84865757599 scopus 로고    scopus 로고
    • Using indirect evidence to determine the comparative effectiveness of prescription drugs: do benefits outweigh risks?
    • Naci H, Fleurence R. 2011. Using indirect evidence to determine the comparative effectiveness of prescription drugs: do benefits outweigh risks? Health Outcomes Research medical 2: 241–249.
    • (2011) Health Outcomes Research medical , vol.2 , pp. 241-249
    • Naci, H.1    Fleurence, R.2
  • 115
    • 84879800854 scopus 로고    scopus 로고
    • Assessing comparative effectiveness of new drugs before approval using prospective network meta-analyses
    • Naci H, O'Connor AB. 2013. Assessing comparative effectiveness of new drugs before approval using prospective network meta-analyses. Journal of Clinical Epidemiology 66: 812–816. DOI:10.1016/j.jclinepi.2013.04.002.
    • (2013) Journal of Clinical Epidemiology , vol.66 , pp. 812-816
    • Naci, H.1    O'Connor, A.B.2
  • 116
  • 117
    • 84919882307 scopus 로고    scopus 로고
    • Network meta-analysis using R: a review of currently available automated packages
    • Neupane B, Richer D, Bonner AJ, Kibret T, Beyene J. 2014. Network meta-analysis using R: a review of currently available automated packages. PLoS ONE 9: e115065. DOI:10.1371/journal.pone.0115065.
    • (2014) PLoS ONE , vol.9
    • Neupane, B.1    Richer, D.2    Bonner, A.J.3    Kibret, T.4    Beyene, J.5
  • 118
    • 84899557077 scopus 로고    scopus 로고
    • Characteristics of networks of interventions: a description of a database of 186 published networks
    • Nikolakopoulou A, Chaimani A, Veroniki AA, Vasiliadis HS, Schmid CH, Salanti G. 2014. Characteristics of networks of interventions: a description of a database of 186 published networks. PLoS One 9: e86754. DOI:10.1371/journal.pone.0086754.
    • (2014) PLoS One , vol.9
    • Nikolakopoulou, A.1    Chaimani, A.2    Veroniki, A.A.3    Vasiliadis, H.S.4    Schmid, C.H.5    Salanti, G.6
  • 119
    • 33847751838 scopus 로고    scopus 로고
    • Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis
    • Nixon RM, Bansback N, Brennan A. 2007. Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis. Statistics in Medicine 26: 1237–1254. DOI:10.1002/sim.2624.
    • (2007) Statistics in Medicine , vol.26 , pp. 1237-1254
    • Nixon, R.M.1    Bansback, N.2    Brennan, A.3
  • 122
    • 70449517080 scopus 로고    scopus 로고
    • Incorporating multiple interventions in meta-analysis: an evaluation of the mixed treatment comparison with the adjusted indirect comparison
    • O'Regan C, Ghement I, Eyawo O, Guyatt GH, Mills EJ. 2009. Incorporating multiple interventions in meta-analysis: an evaluation of the mixed treatment comparison with the adjusted indirect comparison. Trials 10: 86. DOI:10.1186/1745-6215-10-86.
    • (2009) Trials , vol.10 , pp. 86
    • O'Regan, C.1    Ghement, I.2    Eyawo, O.3    Guyatt, G.H.4    Mills, E.J.5
  • 125
    • 84902370968 scopus 로고    scopus 로고
    • Network-meta analysis made easy: detection of inconsistency using factorial analysis-of-variance models
    • Piepho H-P. 2014. Network-meta analysis made easy: detection of inconsistency using factorial analysis-of-variance models. BMC Medical Research Methodology 14: 61. DOI:10.1186/1471-2288-14-61.
    • (2014) BMC Medical Research Methodology , vol.14 , pp. 61
    • Piepho, H.-P.1
  • 126
    • 84920414637 scopus 로고    scopus 로고
    • Multiplicative interaction in network meta-analysis
    • Piepho H-P, Madden LV, Williams ER. 2015. Multiplicative interaction in network meta-analysis. Statistics in Medicine 34: 582–594. DOI:10.1002/sim.6372.
    • (2015) Statistics in Medicine , vol.34 , pp. 582-594
    • Piepho, H.-P.1    Madden, L.V.2    Williams, E.R.3
  • 127
    • 84871665175 scopus 로고    scopus 로고
    • The use of two-way linear mixed models in multitreatment meta-analysis
    • Piepho HP, Williams ER, Madden LV. 2012. The use of two-way linear mixed models in multitreatment meta-analysis. Biometrics 68: 1269–1277.
    • (2012) Biometrics , vol.68 , pp. 1269-1277
    • Piepho, H.P.1    Williams, E.R.2    Madden, L.V.3
  • 129
    • 78650770355 scopus 로고    scopus 로고
    • Parameterization of treatment effects for meta-analysis in multi-state Markov models
    • Price MJ, Welton NJ, Ades AE. 2011a. Parameterization of treatment effects for meta-analysis in multi-state Markov models. Statistics in Medicine 30: 140–151. DOI:10.1002/sim.4059.
    • (2011) Statistics in Medicine , vol.30 , pp. 140-151
    • Price, M.J.1    Welton, N.J.2    Ades, A.E.3
  • 130
    • 79959591126 scopus 로고    scopus 로고
    • Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information
    • Price MJ, Welton NJ, Briggs AH, Ades AE. 2011b. Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information. Value in Health 14: 205–218. DOI:10.1016/j.jval.2010.08.001.
    • (2011) Value in Health , vol.14 , pp. 205-218
    • Price, M.J.1    Welton, N.J.2    Briggs, A.H.3    Ades, A.E.4
  • 131
    • 84963641621 scopus 로고    scopus 로고
    • Vienna, Austria, R Foundation for Statistical Computin
    • R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org
    • (2014) R: A Language and Environment for Statistical Computing
  • 132
    • 84877582368 scopus 로고    scopus 로고
    • Network meta-analysis, electrical networks and graph theory
    • Rücker G. 2012. Network meta-analysis, electrical networks and graph theory. Research Synthesis Methods 3: 312–324.
    • (2012) Research Synthesis Methods , vol.3 , pp. 312-324
    • Rücker, G.1
  • 133
    • 84927578642 scopus 로고    scopus 로고
    • Reduce dimension or reduce weights? Comparing two approaches to multi-arm studies in network meta-analysis
    • Rücker G, Schwarzer G. 2014. Reduce dimension or reduce weights? Comparing two approaches to multi-arm studies in network meta-analysis. Statistics in Medicine 33: 4353–4369. DOI:10.1002/sim.6236.
    • (2014) Statistics in Medicine , vol.33 , pp. 4353-4369
    • Rücker, G.1    Schwarzer, G.2
  • 135
    • 85164560670 scopus 로고    scopus 로고
    • Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool
    • Salanti G. 2012. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Research Synthesis Methods 3: 80–97. DOI:10.1002/jrsm.1037.
    • (2012) Research Synthesis Methods , vol.3 , pp. 80-97
    • Salanti, G.1
  • 136
    • 78650509651 scopus 로고    scopus 로고
    • Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial
    • Salanti G, Ades AE, Ioannidis JPA. 2011. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. Journal of Clinical Epidemiology 64: 163–171. DOI:10.1016/j.jclinepi.2010.03.016.
    • (2011) Journal of Clinical Epidemiology , vol.64 , pp. 163-171
    • Salanti, G.1    Ades, A.E.2    Ioannidis, J.P.A.3
  • 140
    • 67649303082 scopus 로고    scopus 로고
    • A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered
    • Salanti G, Marinho V, Higgins JP. 2009. A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered. Journal of Clinical Epidemiology 62: 857–864. DOI:10.1016/j.jclinepi.2008.10.001.
    • (2009) Journal of Clinical Epidemiology , vol.62 , pp. 857-864
    • Salanti, G.1    Marinho, V.2    Higgins, J.P.3
  • 141
    • 84870254031 scopus 로고    scopus 로고
    • Mixed treatment comparisons using aggregate and individual participant level data
    • Saramago P, Sutton AJ, Cooper NJ, Manca A. 2012. Mixed treatment comparisons using aggregate and individual participant level data. Statistics in Medicine 31: 3516–3536. DOI:10.1002/sim.5442.
    • (2012) Statistics in Medicine , vol.31 , pp. 3516-3536
    • Saramago, P.1    Sutton, A.J.2    Cooper, N.J.3    Manca, A.4
  • 143
    • 84938692431 scopus 로고    scopus 로고
    • Bayesian network meta-analysis for unordered categorical outcomes with incomplete data
    • n/a–n/a. DO
    • Schmid CH, Trikalinos TA, Olkin I. 2013. Bayesian network meta-analysis for unordered categorical outcomes with incomplete data. Research Synthesis Methodsn/a–n/a. DOI. DOI:10.1002/jrsm.1103.
    • (2013) Research Synthesis Methods
    • Schmid, C.H.1    Trikalinos, T.A.2    Olkin, I.3
  • 144
    • 84876704666 scopus 로고    scopus 로고
    • The network meta-analytic-predictive approach to non-inferiority trials
    • Schmidli H, Wandel S, Neuenschwander B. 2013. The network meta-analytic-predictive approach to non-inferiority trials. Statistical Methods in Medical Research 22: 219–240. DOI:10.1177/0962280211432512.
    • (2013) Statistical Methods in Medical Research , vol.22 , pp. 219-240
    • Schmidli, H.1    Wandel, S.2    Neuenschwander, B.3
  • 145
    • 84880045342 scopus 로고    scopus 로고
    • Incorporating data from various trial designs into a mixed treatment comparison model
    • Schmitz S, Adams R, Walsh C. 2013. Incorporating data from various trial designs into a mixed treatment comparison model. Statistics in Medicine. DOI:10.1002/sim.5764.
    • (2013) Statistics in Medicine
    • Schmitz, S.1    Adams, R.2    Walsh, C.3
  • 146
    • 84868292585 scopus 로고    scopus 로고
    • The use of continuous data versus binary data in MTC models: a case study in rheumatoid arthritis
    • Schmitz S, Adams R, Walsh C. 2012. The use of continuous data versus binary data in MTC models: a case study in rheumatoid arthritis. BMC Medical Research Methodology 12: 167. DOI:10.1186/1471-2288-12-167.
    • (2012) BMC Medical Research Methodology , vol.12 , pp. 167
    • Schmitz, S.1    Adams, R.2    Walsh, C.3
  • 148
    • 84860561495 scopus 로고    scopus 로고
    • Comparative effectiveness research using matching-adjusted indirect comparison: an application to treatment with guanfacine extended release or atomoxetine in children with attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder
    • Signorovitch J, Erder MH, Xie J, Sikirica V, Lu M, Hodgkins PS, Wu EQ. 2012. Comparative effectiveness research using matching-adjusted indirect comparison: an application to treatment with guanfacine extended release or atomoxetine in children with attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder. Pharmacoepidemiol. Saf 21(Suppl 2): 130–137. DOI:10.1002/pds.3246.
    • (2012) Pharmacoepidemiol. Saf , vol.21 , pp. 130-137
    • Signorovitch, J.1    Erder, M.H.2    Xie, J.3    Sikirica, V.4    Lu, M.5    Hodgkins, P.S.6    Wu, E.Q.7
  • 149
    • 80053479579 scopus 로고    scopus 로고
    • Indirect comparisons in the comparative efficacy and non-inferiority settings
    • Snapinn S, Jiang Q. 2011. Indirect comparisons in the comparative efficacy and non-inferiority settings. Pharmaceutical Statistics 10: 420–426. DOI:10.1002/pst.509.
    • (2011) Pharmaceutical Statistics , vol.10 , pp. 420-426
    • Snapinn, S.1    Jiang, Q.2
  • 151
    • 84880575724 scopus 로고    scopus 로고
    • Methods used to conduct and report Bayesian mixed treatment comparisons published in the medical literature: a systematic review
    • Sobieraj DM, Cappelleri JC, Baker WL, Phung OJ, White CM, Coleman CI. 2013. Methods used to conduct and report Bayesian mixed treatment comparisons published in the medical literature: a systematic review. BMJ Open 3. DOI:10.1136/bmjopen-2013-003111.
    • (2013) BMJ Open , vol.3
    • Sobieraj, D.M.1    Cappelleri, J.C.2    Baker, W.L.3    Phung, O.J.4    White, C.M.5    Coleman, C.I.6
  • 152
    • 0037374008 scopus 로고    scopus 로고
    • Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses
    • Song F, Altman DG, Glenny AM, Deeks JJ. 2003. Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ 326: 472. DOI:10.1136/bmj.326.7387.472.
    • (2003) BMJ , vol.326 , pp. 472
    • Song, F.1    Altman, D.G.2    Glenny, A.M.3    Deeks, J.J.4
  • 153
    • 84866025505 scopus 로고    scopus 로고
    • Simulation evaluation of statistical properties of methods for indirect and mixed treatment comparisons
    • Song F, Clark A, Bachmann MO, Maas J. 2012. Simulation evaluation of statistical properties of methods for indirect and mixed treatment comparisons. BMC Medical Research Methodology 12: 138. DOI:10.1186/1471-2288-12-138.
    • (2012) BMC Medical Research Methodology , vol.12 , pp. 138
    • Song, F.1    Clark, A.2    Bachmann, M.O.3    Maas, J.4
  • 154
    • 41249090512 scopus 로고    scopus 로고
    • Adjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventions
    • Song F, Harvey I, Lilford R. 2008. Adjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventions. Journal of Clinical Epidemiology 61: 455–463. DOI:10.1016/j.jclinepi.2007.06.006.
    • (2008) Journal of Clinical Epidemiology , vol.61 , pp. 455-463
    • Song, F.1    Harvey, I.2    Lilford, R.3
  • 155
    • 67649215130 scopus 로고    scopus 로고
    • Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews
    • Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG. 2009. Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews. BMJ 338: b1147.
    • (2009) BMJ , vol.338 , pp. b1147
    • Song, F.1    Loke, Y.K.2    Walsh, T.3    Glenny, A.M.4    Eastwood, A.J.5    Altman, D.G.6
  • 157
    • 0344897785 scopus 로고    scopus 로고
    • Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling
    • Spiegelhalter DJ, Best NG. 2003. Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Statistics in Medicine 22: 3687–3709. DOI:10.1002/sim.1586.
    • (2003) Statistics in Medicine , vol.22 , pp. 3687-3709
    • Spiegelhalter, D.J.1    Best, N.G.2
  • 159
    • 84878252449 scopus 로고    scopus 로고
    • Evaluating the impact of imputations for missing participant outcome data in a network meta-analysis
    • Spineli LM, Higgins JP, Cipriani A, Leucht S, Salanti G. 2013. Evaluating the impact of imputations for missing participant outcome data in a network meta-analysis. Clinical Trials London England 10: 378–388. DOI:10.1177/1740774512470317.
    • (2013) Clinical Trials London England , vol.10 , pp. 378-388
    • Spineli, L.M.1    Higgins, J.P.2    Cipriani, A.3    Leucht, S.4    Salanti, G.5
  • 162
    • 84884204520 scopus 로고    scopus 로고
    • Unsolved issues of mixed treatment comparison meta-analysis: network size and inconsistency
    • Sturtz S, Bender R. 2012. Unsolved issues of mixed treatment comparison meta-analysis: network size and inconsistency. Research Synthesis Methods 3: 300–311.
    • (2012) Research Synthesis Methods , vol.3 , pp. 300-311
    • Sturtz, S.1    Bender, R.2
  • 163
    • 51149095603 scopus 로고    scopus 로고
    • Use of indirect and mixed treatment comparisons for technology assessment
    • Sutton A, Ades AE, Cooper N, Abrams K. 2008. Use of indirect and mixed treatment comparisons for technology assessment. PharmacoEconomics 26: 753–767.
    • (2008) PharmacoEconomics , vol.26 , pp. 753-767
    • Sutton, A.1    Ades, A.E.2    Cooper, N.3    Abrams, K.4
  • 164
    • 65649088642 scopus 로고    scopus 로고
    • Evidence synthesis as the key to more coherent and efficient research
    • Sutton AJ, Cooper NJ, Jones DR. 2009. Evidence synthesis as the key to more coherent and efficient research. BMC Medical Research Methodology 9: 29. DOI:10.1186/1471-2288-9-29.
    • (2009) BMC Medical Research Methodology , vol.9 , pp. 29
    • Sutton, A.J.1    Cooper, N.J.2    Jones, D.R.3
  • 165
    • 84890156409 scopus 로고    scopus 로고
    • Presentational approaches used in the UK for reporting evidence synthesis using indirect and mixed treatment comparisons
    • Tan SH, Bujkiewicz S, Sutton A, Dequen P, Cooper N. 2013. Presentational approaches used in the UK for reporting evidence synthesis using indirect and mixed treatment comparisons. Journal of Health Services Research & Policy 18: 224–232. DOI:10.1177/1355819613498379.
    • (2013) Journal of Health Services Research & Policy , vol.18 , pp. 224-232
    • Tan, S.H.1    Bujkiewicz, S.2    Sutton, A.3    Dequen, P.4    Cooper, N.5
  • 167
    • 84860857394 scopus 로고    scopus 로고
    • Stability of additive treatment effects in multiple treatment comparison meta-analysis: a simulation study
    • Thorlund K, Mills E. 2012a. Stability of additive treatment effects in multiple treatment comparison meta-analysis: a simulation study. Journal of Clinical Epidemiology 4: 75–85. DOI:10.2147/CLEP.S29470.
    • (2012) Journal of Clinical Epidemiology , vol.4 , pp. 75-85
    • Thorlund, K.1    Mills, E.2
  • 168
    • 84875878623 scopus 로고    scopus 로고
    • Sample size and power considerations in network meta-analysis
    • Thorlund K, Mills EJ. 2012b. Sample size and power considerations in network meta-analysis. Systematic Reviews 1: 41. DOI:10.1186/2046-4053-1-41.
    • (2012) Systematic Reviews , vol.1 , pp. 41
    • Thorlund, K.1    Mills, E.J.2
  • 169
    • 84872133438 scopus 로고    scopus 로고
    • Modelling heterogeneity variances in multiple treatment comparison meta-analysis-are informative priors the better solution?
    • Thorlund K, Thabane L, Mills EJ. 2013. Modelling heterogeneity variances in multiple treatment comparison meta-analysis-are informative priors the better solution? BMC Medical Research Methodology 13: 2. DOI:10.1186/1471-2288-13-2.
    • (2013) BMC Medical Research Methodology , vol.13 , pp. 2
    • Thorlund, K.1    Thabane, L.2    Mills, E.J.3
  • 170
    • 84899150855 scopus 로고    scopus 로고
    • The impact of incorporating Bayesian network meta-analysis in cost-effectiveness analysis – a case study of pharmacotherapies for moderate to severe COPD
    • Thorlund K, Zafari Z, Druyts E, Mills EJ, Sadatsafavi M. 2014. The impact of incorporating Bayesian network meta-analysis in cost-effectiveness analysis – a case study of pharmacotherapies for moderate to severe COPD. Cost Effectiveness and Resource Allocation CE 12: 8. DOI:10.1186/1478-7547-12-8.
    • (2014) Cost Effectiveness and Resource Allocation CE , vol.12 , pp. 8
    • Thorlund, K.1    Zafari, Z.2    Druyts, E.3    Mills, E.J.4    Sadatsafavi, M.5
  • 171
    • 84859984913 scopus 로고    scopus 로고
    • Impact of reporting bias in network meta-analysis of antidepressant placebo-controlled trials
    • Trinquart L, Abbe A, Ravaud P. 2012a. Impact of reporting bias in network meta-analysis of antidepressant placebo-controlled trials. PLoS One 7: e35219. DOI:10.1371/journal.pone.0035219.
    • (2012) PLoS One , vol.7
    • Trinquart, L.1    Abbe, A.2    Ravaud, P.3
  • 172
    • 84866661742 scopus 로고    scopus 로고
    • Adjustment for reporting bias in network meta-analysis of antidepressant trials
    • Trinquart L, Chatellier G, Ravaud P. 2012b. Adjustment for reporting bias in network meta-analysis of antidepressant trials. BMC Medical Research Methodology 12: 150. DOI:10.1186/1471-2288-12-150.
    • (2012) BMC Medical Research Methodology , vol.12 , pp. 150
    • Trinquart, L.1    Chatellier, G.2    Ravaud, P.3
  • 174
    • 84937548216 scopus 로고    scopus 로고
    • A primer on network meta-analysis for dental research
    • Tu YK, Faggion CM. 2012. A primer on network meta-analysis for dental research. ISRN Dentistry 2012: 276520. DOI:10.5402/2012/276520.
    • (2012) ISRN Dentistry , vol.2012 , pp. 276520
    • Tu, Y.K.1    Faggion, C.M.2
  • 175
    • 0037186429 scopus 로고    scopus 로고
    • Advanced methods in meta-analysis: multivariate approach and meta-regression
    • van Houwelingen HC, Arends LR, Stijnen T. 2002. Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine 21: 589–624.
    • (2002) Statistics in Medicine , vol.21 , pp. 589-624
    • van Houwelingen, H.C.1    Arends, L.R.2    Stijnen, T.3
  • 176
    • 84875437971 scopus 로고    scopus 로고
    • Evidence synthesis assumes additivity on the scale of measurement: response to ‘Rank reversal in indirect comparisons’ by Norton et al
    • van Valkenhoef G, Ades AE. 2013. Evidence synthesis assumes additivity on the scale of measurement: response to ‘Rank reversal in indirect comparisons’ by Norton et al. Value in Health 16: 449–451. DOI:10.1016/j.jval.2012.11.012.
    • (2013) Value in Health , vol.16 , pp. 449-451
    • van Valkenhoef, G.1    Ades, A.E.2
  • 182
    • 77958110812 scopus 로고    scopus 로고
    • Conducting meta-analyses in R with the metafor package
    • Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36: 1–48. DOI:10.18637/jss.v036.i03.
    • (2010) Journal of Statistical Software , vol.36 , pp. 1-48
    • Viechtbauer, W.1
  • 183
    • 0033825852 scopus 로고    scopus 로고
    • Choice of effect measure for epidemiological data
    • Walter SD. 2000. Choice of effect measure for epidemiological data. Journal of Clinical Epidemiology 53: 931–939. DOI:10.1016/S0895-4356(00)00210-9.
    • (2000) Journal of Clinical Epidemiology , vol.53 , pp. 931-939
    • Walter, S.D.1
  • 184
    • 84895915896 scopus 로고    scopus 로고
    • Hierarchical network meta-analysis models to address sparsity of events and differing treatment classifications with regard to adverse outcomes
    • Warren FC, Abrams KR, Sutton AJ. 2014. Hierarchical network meta-analysis models to address sparsity of events and differing treatment classifications with regard to adverse outcomes. Statistics in Medicine. DOI:10.1002/sim.6131.
    • (2014) Statistics in Medicine
    • Warren, F.C.1    Abrams, K.R.2    Sutton, A.J.3
  • 186
    • 65249175684 scopus 로고    scopus 로고
    • Mixed treatment comparison meta-analysis of complex interventions: psychological interventions in coronary heart disease
    • Welton NJ, Caldwell DM, Adamopoulos E, Vedhara K. 2009. Mixed treatment comparison meta-analysis of complex interventions: psychological interventions in coronary heart disease. American Journal of Epidemiology 169: 1158–1165. DOI:10.1093/aje/kwp014.
    • (2009) American Journal of Epidemiology , vol.169 , pp. 1158-1165
    • Welton, N.J.1    Caldwell, D.M.2    Adamopoulos, E.3    Vedhara, K.4
  • 187
    • 58749087269 scopus 로고    scopus 로고
    • Mixed treatment comparison with multiple outcomes reported inconsistently across trials: evaluation of antivirals for treatment of influenza A and B
    • Welton NJ, Cooper NJ, Ades AE, Lu G, Sutton AJ. 2008. Mixed treatment comparison with multiple outcomes reported inconsistently across trials: evaluation of antivirals for treatment of influenza A and B. Statistics in Medicine 27: 5620–5639. DOI:10.1002/sim.3377.
    • (2008) Statistics in Medicine , vol.27 , pp. 5620-5639
    • Welton, N.J.1    Cooper, N.J.2    Ades, A.E.3    Lu, G.4    Sutton, A.J.5
  • 189
    • 84873732993 scopus 로고    scopus 로고
    • Synthesis of survival and disease progression outcomes for health technology assessment of cancer therapies
    • Welton NJ, Willis SR, Ades AE. 2010. Synthesis of survival and disease progression outcomes for health technology assessment of cancer therapies. Research Synthesis Methods 1: 239–257.
    • (2010) Research Synthesis Methods , vol.1 , pp. 239-257
    • Welton, N.J.1    Willis, S.R.2    Ades, A.E.3
  • 190
    • 84875612338 scopus 로고    scopus 로고
    • Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression
    • White IR, Barrett JK, Jackson D, Higgins JPT. 2012. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Research Synthesis Methods 3: 111–125.
    • (2012) Research Synthesis Methods , vol.3 , pp. 111-125
    • White, I.R.1    Barrett, J.K.2    Jackson, D.3    Higgins, J.P.T.4
  • 191
    • 16244423743 scopus 로고    scopus 로고
    • Adjusted likelihoods for synthesizing empirical evidence from studies that differ in quality and design: effects of environmental tobacco smoke
    • Wolpert RL, Mengersen KL. 2004. Adjusted likelihoods for synthesizing empirical evidence from studies that differ in quality and design: effects of environmental tobacco smoke. Statistical Science 19: 450–471.
    • (2004) Statistical Science , vol.19 , pp. 450-471
    • Wolpert, R.L.1    Mengersen, K.L.2
  • 192
    • 77953235448 scopus 로고    scopus 로고
    • Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: a tutorial
    • Woods BS, Hawkins N, Scott DA. 2010. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: a tutorial. BMC Medical Research Methodology 10: 54. DOI:10.1186/1471-2288-10-54.
    • (2010) BMC Medical Research Methodology , vol.10 , pp. 54
    • Woods, B.S.1    Hawkins, N.2    Scott, D.A.3
  • 194


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.