메뉴 건너뛰기




Volumn 3, Issue 2, 2012, Pages 111-125

Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84875612338     PISSN: None     EISSN: 17592887     Source Type: Journal    
DOI: 10.1002/jrsm.1045     Document Type: Conference Paper
Times cited : (844)

References (27)
  • 1
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks SP, Gelman A. 1998. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7: 434–455.
    • (1998) J Comput Graph Stat , vol.7 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 2
    • 26944454062 scopus 로고    scopus 로고
    • Simultaneous comparison of multiple treatments: combining direct and indirect evidence
    • Caldwell DM, Ades AE, Higgins JPT. 2005. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. Br Med J 331: 897–900.
    • (2005) Br Med J , vol.331 , pp. 897-900
    • Caldwell, D.M.1    Ades, A.E.2    Higgins, J.P.T.3
  • 3
    • 77949420042 scopus 로고    scopus 로고
    • Checking consistency in mixed treatment comparison meta-analysis
    • Dias S, Welton NJ, Caldwell DM, Ades AE. 2010. Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29: 932–944.
    • (2010) Stat Med , vol.29 , pp. 932-944
    • Dias, S.1    Welton, N.J.2    Caldwell, D.M.3    Ades, A.E.4
  • 5
    • 36849058782 scopus 로고    scopus 로고
    • The binomial distribution of meta-analysis was preferred to model within-study variability
    • Hamza TH, van Houwelingen HC, Stijnen T. 2008. The binomial distribution of meta-analysis was preferred to model within-study variability. J Clin Epidemiol 61: 41–51.
    • (2008) J Clin Epidemiol , vol.61 , pp. 41-51
    • Hamza, T.H.1    van Houwelingen, H.C.2    Stijnen, T.3
  • 7
    • 84875625927 scopus 로고    scopus 로고
    • Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies
    • Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR. 2012. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Meth 3: 98–110.
    • (2012) Res Synth Meth , vol.3 , pp. 98-110
    • Higgins, J.P.T.1    Jackson, D.2    Barrett, J.K.3    Lu, G.4    Ades, A.E.5    White, I.R.6
  • 8
    • 0037186429 scopus 로고    scopus 로고
    • Advanced methods in meta-analysis: multivariate approach and meta-regression
    • van Houwelingen HC, Arends LR, Stijnen T. 2002. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 21: 589–624.
    • (2002) Stat Med , vol.21 , pp. 589-624
    • van Houwelingen, H.C.1    Arends, L.R.2    Stijnen, T.3
  • 9
    • 80051781370 scopus 로고    scopus 로고
    • Multivariate meta-analysis: potential and promise
    • Jackson D, Riley R, White IR. 2011. Multivariate meta-analysis: potential and promise. Stat Med 30: 2481–2498.
    • (2011) Stat Med , vol.30 , pp. 2481-2498
    • Jackson, D.1    Riley, R.2    White, I.R.3
  • 10
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. 2005. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med 15: 2401–2428.
    • (2005) Stat Med , vol.15 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 11
    • 33745663057 scopus 로고    scopus 로고
    • Assessing evidence inconsistency in mixed treatment comparisons
    • Lu G, Ades AE. 2006. Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc 101: 447–459.
    • (2006) J Am Stat Assoc , vol.101 , pp. 447-459
    • Lu, G.1    Ades, A.E.2
  • 12
    • 74349083543 scopus 로고    scopus 로고
    • Modeling between-trial variance structure in mixed treatment comparisons
    • Lu G, Ades AE. 2009. Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics 10: 792–805.
    • (2009) Biostatistics , vol.10 , pp. 792-805
    • Lu, G.1    Ades, A.E.2
  • 13
    • 84871663863 scopus 로고    scopus 로고
    • Linear inference for mixed treatment comparison meta-analysis: a two-stage approach
    • Lu G, Welton NJ, Higgins JPT, White IR, Ades AE. 2011. Linear inference for mixed treatment comparison meta-analysis: a two-stage approach. Res Synth Meth 2: 43–60.
    • (2011) Res Synth Meth , vol.2 , pp. 43-60
    • Lu, G.1    Welton, N.J.2    Higgins, J.P.T.3    White, I.R.4    Ades, A.E.5
  • 14
    • 0037199837 scopus 로고    scopus 로고
    • Network meta-analysis for indirect treatment comparisons
    • Lumley T. 2002. Network meta-analysis for indirect treatment comparisons. Stat Med 21: 2313–2324.
    • (2002) Stat Med , vol.21 , pp. 2313-2324
    • Lumley, T.1
  • 15
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn DJ, Thomas A, Best N, Spiegelhalter D. 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10: 325–337.
    • (2000) Stat Comput , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 16
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins JPT, Deeks JJ. 2011. Interpretation of random effects meta-analyses. Br Med J 342: d549.
    • (2011) Br Med J , vol.342 , pp. d549
    • Riley, R.D.1    Higgins, J.P.T.2    Deeks, J.J.3
  • 18
    • 67649303082 scopus 로고    scopus 로고
    • A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered
    • Salanti G, Marinho V, Higgins J. 2009. A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered. J Clin Epidemiol 62: 857–864.
    • (2009) J Clin Epidemiol , vol.62 , pp. 857-864
    • Salanti, G.1    Marinho, V.2    Higgins, J.3
  • 19
    • 78650509651 scopus 로고    scopus 로고
    • Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial
    • Salanti G, Ades A, Ioannidis J. 2011. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64: 163–171.
    • (2011) J Clin Epidemiol , vol.64 , pp. 163-171
    • Salanti, G.1    Ades, A.2    Ioannidis, J.3
  • 20
    • 67649215130 scopus 로고    scopus 로고
    • Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews
    • Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG. 2009. Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews. Br Med J 338: b1147.
    • (2009) Br Med J , vol.338 , pp. b1147
    • Song, F.1    Loke, Y.K.2    Walsh, T.3    Glenny, A.M.4    Eastwood, A.J.5    Altman, D.G.6
  • 22
    • 78649672029 scopus 로고    scopus 로고
    • Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
    • Stijnen T, Hamza TH, Özdemir P. 2010. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 29: 3046–3067.
    • (2010) Stat Med , vol.29 , pp. 3046-3067
    • Stijnen, T.1    Hamza, T.H.2    Özdemir, P.3
  • 23
    • 2342661718 scopus 로고    scopus 로고
    • What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data
    • Sweeting MJ, Sutton AJ, Lambert PC. 2004. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med 23: 1351–1375.
    • (2004) Stat Med , vol.23 , pp. 1351-1375
    • Sweeting, M.J.1    Sutton, A.J.2    Lambert, P.C.3
  • 24
    • 0028152471 scopus 로고
    • Why sources of heterogeneity in meta-analysis should be investigated
    • Thompson SG. 1994. Why sources of heterogeneity in meta-analysis should be investigated. Br Med J 309: 1351–1355.
    • (1994) Br Med J , vol.309 , pp. 1351-1355
    • Thompson, S.G.1
  • 25
    • 0033619529 scopus 로고    scopus 로고
    • Explaining heterogeneity in meta-analysis: a comparison of methods
    • Thompson SG, Sharp S. 1999. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18: 2693–2708.
    • (1999) Stat Med , vol.18 , pp. 2693-2708
    • Thompson, S.G.1    Sharp, S.2
  • 26
    • 68149160854 scopus 로고    scopus 로고
    • Multivariate random-effects meta-analysis
    • White IR. 2009. Multivariate random-effects meta-analysis. Stata J 9: 40–56.
    • (2009) Stata J , vol.9 , pp. 40-56
    • White, I.R.1
  • 27
    • 79960824714 scopus 로고    scopus 로고
    • Multivariate random-effects meta-regression
    • White IR. 2011. Multivariate random-effects meta-regression. Stata J 11: 255–270.
    • (2011) Stata J , vol.11 , pp. 255-270
    • White, I.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.