메뉴 건너뛰기




Volumn 42, Issue 1, 2013, Pages 332-345

Evaluation of inconsistency in networks of interventions

Author keywords

Coherence; Heterogeneity; Loops; Mixed treatment comparison; Multiple treatments meta analysis; Odds ratio

Indexed keywords

COMPARATIVE STUDY; DATA ACQUISITION; ESTIMATION METHOD; HETEROGENEITY; META-ANALYSIS; SENSITIVITY ANALYSIS; STATISTICAL ANALYSIS; TESTING METHOD;

EID: 84875595220     PISSN: 03005771     EISSN: 14643685     Source Type: Journal    
DOI: 10.1093/ije/dys222     Document Type: Article
Times cited : (412)

References (45)
  • 1
    • 0030793120 scopus 로고    scopus 로고
    • The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials
    • Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 1997;50:683-91.
    • (1997) J Clin Epidemiol , vol.50 , pp. 683-691
    • Bucher, H.C.1    Guyatt, G.H.2    Griffith, L.E.3    Walter, S.D.4
  • 2
    • 26944454062 scopus 로고    scopus 로고
    • Simultaneous comparison of multiple treatments: combining direct and indirect evidence
    • Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ 2005;331:897-900.
    • (2005) BMJ , vol.331 , pp. 897-900
    • Caldwell, D.M.1    Ades, A.E.2    Higgins, J.P.3
  • 3
    • 0030463880 scopus 로고    scopus 로고
    • Borrowing strength from external trials in a meta-analysis
    • Higgins JP, Whitehead A. Borrowing strength from external trials in a meta-analysis. Stat Med 1996;15:2733-49
    • (1996) Stat Med , vol.15 , pp. 2733-2749
    • Higgins, J.P.1    Whitehead, A.2
  • 4
    • 5044221416 scopus 로고    scopus 로고
    • Combination of direct and indirect evidence in mixed treatment comparisons
    • Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 2004;23: 3105-24.
    • (2004) Stat Med , vol.23 , pp. 3105-3124
    • Lu, G.1    Ades, A.E.2
  • 5
    • 84880643579 scopus 로고    scopus 로고
    • Rockville, MD: US Agency for Healthcare Research and Quality, (4 February 2013, date last accessed)
    • Coleman CI, Phung OJ, Cappelleri JC et al. Use of Mixed Treatment Comparisons in Systematic Reviews. Rockville, MD: US Agency for Healthcare Research and Quality, 2012. Introduction available from: http://www.ncbi.nlm.nih.gov/books/NBK107325/ (4 February 2013, date last accessed).
    • (2012) Use of Mixed Treatment Comparisons in Systematic Reviews
    • Coleman, C.I.1    Phung, O.J.2    Cappelleri, J.C.3
  • 6
    • 33745663057 scopus 로고    scopus 로고
    • Assessing evidence inconsistency in mixed treatment comparisons
    • Lu GB, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc 2006;101: 447-59.
    • (2006) J Am Stat Assoc , vol.101 , pp. 447-459
    • Lu, G.B.1    Ades, A.E.2
  • 7
    • 0037374008 scopus 로고    scopus 로고
    • Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses
    • Song F, Altman DG, Glenny AM, Deeks JJ. Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ 2003;326:472.
    • (2003) BMJ , vol.326 , pp. 472
    • Song, F.1    Altman, D.G.2    Glenny, A.M.3    Deeks, J.J.4
  • 8
    • 84859007944 scopus 로고    scopus 로고
    • Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study
    • Song F, Xiong T, Parekh-Bhurke S, Loke YK, Sutton AJ, Eastwood AJ et al. Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study. BMJ 2011;343:d4909.
    • (2011) BMJ , vol.343
    • Song, F.1    Xiong, T.2    Parekh-Bhurke, S.3    Loke, Y.K.4    Sutton, A.J.5    Eastwood, A.J.6
  • 10
    • 79960824714 scopus 로고    scopus 로고
    • Multivariate random-effects meta-regression: Updates to mvmeta
    • White IR. Multivariate random-effects meta-regression: Updates to mvmeta. Stata J 2011;11:255-70.
    • (2011) Stata J , vol.11 , pp. 255-270
    • White, I.R.1
  • 12
    • 34047237099 scopus 로고    scopus 로고
    • A comparison of heterogeneity variance estimators in combining results of studies
    • Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in combining results of studies. Stat Med 2007;26:1964-81.
    • (2007) Stat Med , vol.26 , pp. 1964-1981
    • Sidik, K.1    Jonkman, J.N.2
  • 13
    • 0037098201 scopus 로고    scopus 로고
    • Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes
    • Deeks JJ. Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Stat Med 2002;21:1575-600.
    • (2002) Stat Med , vol.21 , pp. 1575-1600
    • Deeks, J.J.1
  • 14
    • 0034662061 scopus 로고    scopus 로고
    • Heterogeneity and statistical significance in metaanalysis: an empirical study of 125 meta-analyses
    • Engels EA, Schmid CH, Terrin N, Olkin I, Lau J. Heterogeneity and statistical significance in metaanalysis: an empirical study of 125 meta-analyses. Stat Med 2000;19:1707-28.
    • (2000) Stat Med , vol.19 , pp. 1707-1728
    • Engels, E.A.1    Schmid, C.H.2    Terrin, N.3    Olkin, I.4    Lau, J.5
  • 15
    • 84874115637 scopus 로고    scopus 로고
    • Selecting the best scale for measuring treatment effect in a network meta-analysis: a case study in childhood nocturnal enuresis
    • Caldwell DM, Welton NJ, Dias S, Ades AE. Selecting the best scale for measuring treatment effect in a network meta-analysis: a case study in childhood nocturnal enuresis. Res Synth Methods 2012;3:126-41.
    • (2012) Res Synth Methods , vol.3 , pp. 126-141
    • Caldwell, D.M.1    Welton, N.J.2    Dias, S.3    Ades, A.E.4
  • 17
    • 67649303082 scopus 로고    scopus 로고
    • A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered
    • Salanti G, Marinho V, Higgins JP. A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered. J Clin Epidemiol 2009;62: 857-64.
    • (2009) J Clin Epidemiol , vol.62 , pp. 857-864
    • Salanti, G.1    Marinho, V.2    Higgins, J.P.3
  • 19
    • 84875625927 scopus 로고    scopus 로고
    • Consistency and inconstency in network meta-analysis: concepts and models for multi-arm studies
    • Higgins JPT, Jackson D, Barret JK, Lu G, Ades AE, White IR. Consistency and inconstency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 2012;3:98-110.
    • (2012) Res Synth Methods , vol.3 , pp. 98-110
    • Higgins, J.P.T.1    Jackson, D.2    Barret, J.K.3    Lu, G.4    Ades, A.E.5    White, I.R.6
  • 20
    • 84875612338 scopus 로고    scopus 로고
    • Consistency and inconsistency in multiple treatments meta-analysis: model estimation using multivariate meta-regression
    • White IR, Barret JK, Jackson D, Higgins JPT. Consistency and inconsistency in multiple treatments meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods 2012;3:111-25.
    • (2012) Res Synth Methods , vol.3 , pp. 111-125
    • White, I.R.1    Barret, J.K.2    Jackson, D.3    Higgins, J.P.T.4
  • 22
    • 84902750259 scopus 로고    scopus 로고
    • Analyzing effect sizes: random effects models
    • In Cooper H, Hedges LV, Valentine JC (eds)., New York: Russell Sage Foundation
    • Raudenbush S.W. Analyzing effect sizes: random effects models. In Cooper H, Hedges LV, Valentine JC (eds). The Handbook of Research Synthesis and Meta-Analysis. 2nd edn. New York: Russell Sage Foundation, 2009.
    • (2009) The Handbook of Research Synthesis and Meta-Analysis.
    • Raudenbush, S.W.1
  • 23
    • 27544512687 scopus 로고    scopus 로고
    • Bias and efficiency of meta-analytic variance estimators in the random-effects model
    • Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat 2005;30:261-93.
    • (2005) J Educ Behav Stat , vol.30 , pp. 261-293
    • Viechtbauer, W.1
  • 26
    • 84875601583 scopus 로고    scopus 로고
    • The Cochrane Collaboration. Review Manager (RevMan), Version 5.1. Copenhagen [computer program]
    • The Cochrane Collaboration. Review Manager (RevMan). Available from http://ims.cochrane.org [computer program] Version 5.1. Copenhagen; 2011.
    • (2011)
  • 27
    • 43049146541 scopus 로고    scopus 로고
    • Confidence intervals for the overall effect size in random-effects meta-analysis
    • Sanchez-Meca J, Marin-Martinez F. Confidence intervals for the overall effect size in random-effects meta-analysis. Psychol Methods 2008;13:31-48.
    • (2008) Psychol Methods , vol.13 , pp. 31-48
    • Sanchez-Meca, J.1    Marin-Martinez, F.2
  • 28
    • 33646897928 scopus 로고    scopus 로고
    • Robust variance estimation for random effects meta-analysis
    • Sidik K, Jonkman JN. Robust variance estimation for random effects meta-analysis. Comp Stat Data Anal 2006; 50:3681-701.
    • (2006) Comp Stat Data Anal , vol.50 , pp. 3681-3701
    • Sidik, K.1    Jonkman, J.N.2
  • 29
    • 0033619529 scopus 로고    scopus 로고
    • Explaining heterogeneity in meta-analysis: a comparison of methods
    • Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 1999; 18:2693-708.
    • (1999) Stat Med , vol.18 , pp. 2693-2708
    • Thompson, S.G.1    Sharp, S.J.2
  • 31
    • 22544444917 scopus 로고    scopus 로고
    • A note on variance estimation in random effects meta-regression
    • Sidik K, Jonkman JN. A note on variance estimation in random effects meta-regression. J Biopharm Stat 2005;15: 823-38.
    • (2005) J Biopharm Stat , vol.15 , pp. 823-838
    • Sidik, K.1    Jonkman, J.N.2
  • 32
    • 0029874040 scopus 로고    scopus 로고
    • A likelihood approach to metaanalysis with random effects
    • Hardy RJ, Thompson SG. A likelihood approach to metaanalysis with random effects. Stat Med 1996;15:619-29.
    • (1996) Stat Med , vol.15 , pp. 619-629
    • Hardy, R.J.1    Thompson, S.G.2
  • 33
    • 84855183915 scopus 로고    scopus 로고
    • Technical Support Document series No. 4 (April 2012, date last accessed). National Institute for Health and Clinical Excellence (NICE) Decision Support Unit (DSU). Technical Support Document
    • Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU Technical Support Document 4: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. Technical Support Document series No. 4, available from http:// www.nicedsu.org.uk (April 2012, date last accessed). National Institute for Health and Clinical Excellence (NICE) Decision Support Unit (DSU). Technical Support Document 2011.
    • (2011) NICE DSU Technical Support Document Inconsistency in Networks of Evidence Based on Randomised Controlled Trials , vol.4
    • Dias, S.1    Welton, N.J.2    Sutton, A.J.3    Ades, A.E.4
  • 34
    • 77953688080 scopus 로고    scopus 로고
    • Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency
    • Caldwell DM, Welton NJ, Ades AE. Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency. J Clin Epidemiol 2010;63:875-82.
    • (2010) J Clin Epidemiol , vol.63 , pp. 875-882
    • Caldwell, D.M.1    Welton, N.J.2    Ades, A.E.3
  • 35
    • 77949420042 scopus 로고    scopus 로고
    • Checking consistency in mixed treatment comparison meta-analysis
    • Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med 2010;29:932-44.
    • (2010) Stat Med , vol.29 , pp. 932-944
    • Dias, S.1    Welton, N.J.2    Caldwell, D.M.3    Ades, A.E.4
  • 37
    • 33745663057 scopus 로고    scopus 로고
    • Assessing Evidence Inconsistency in Mixed Treatment Comparisons
    • Lu G, Ades AE. Assessing Evidence Inconsistency in Mixed Treatment Comparisons. J Am Stat Assoc 2006;101:447-59.
    • (2006) J Am Stat Assoc , vol.101 , pp. 447-459
    • Lu, G.1    Ades, A.E.2
  • 38
    • 0037199837 scopus 로고    scopus 로고
    • Network meta-analysis for indirect treatment comparisons
    • Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med 2002;21:2313-24.
    • (2002) Stat Med , vol.21 , pp. 2313-2324
    • Lumley, T.1
  • 39
    • 33846294746 scopus 로고    scopus 로고
    • Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis
    • Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007;369:201-07.
    • (2007) Lancet , vol.369 , pp. 201-207
    • Elliott, W.J.1    Meyer, P.M.2
  • 40
    • 79953285789 scopus 로고    scopus 로고
    • Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods
    • Friedrich JO, Adhikari NK, Beyene J. Ratio of means for analyzing continuous outcomes in meta-analysis performed as well as mean difference methods. J Clin Epidemiol 2011;64:556-64.
    • (2011) J Clin Epidemiol , vol.64 , pp. 556-564
    • Friedrich, J.O.1    Adhikari, N.K.2    Beyene, J.3
  • 41
    • 85164560670 scopus 로고    scopus 로고
    • Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool
    • Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods 2012;3: 80-97.
    • (2012) Res Synth Methods , vol.3 , pp. 80-97
    • Salanti, G.1
  • 42
    • 74349083543 scopus 로고    scopus 로고
    • Modeling between-trial variance structure in mixed treatment comparisons
    • Lu G, Ades A. Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics 2009;10: 792-805.
    • (2009) Biostatistics , vol.10 , pp. 792-805
    • Lu, G.1    Ades, A.2
  • 43
    • 79251606423 scopus 로고    scopus 로고
    • Estimating the power of indirect comparisons: a simulation study
    • Mills EJ, Ghement I, O'Regan C, Thorlund K. Estimating the power of indirect comparisons: a simulation study. PLoS One 2011;6:e16237.
    • (2011) PLoS One , vol.6
    • Mills, E.J.1    Ghement, I.2    O'Regan, C.3    Thorlund, K.4
  • 44
    • 80052708232 scopus 로고    scopus 로고
    • Consistency between direct and indirect trial evidence: is direct evidence always more reliable?
    • Madan J, Stevenson MD, Cooper KL, Ades AE, Whyte S, Akehurst R. Consistency between direct and indirect trial evidence: is direct evidence always more reliable? Value Health 2011;14:953-60.
    • (2011) Value Health , vol.14 , pp. 953-960
    • Madan, J.1    Stevenson, M.D.2    Cooper, K.L.3    Ades, A.E.4    Whyte, S.5    Akehurst, R.6
  • 45
    • 67649215130 scopus 로고    scopus 로고
    • Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews
    • Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG. Methodological problems in the use of indirect comparisons for evaluating healthcare interventions: survey of published systematic reviews. BMJ 2009;338: b1147.
    • (2009) BMJ , vol.338
    • Song, F.1    Loke, Y.K.2    Walsh, T.3    Glenny, A.M.4    Eastwood, A.J.5    Altman, D.G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.