메뉴 건너뛰기




Volumn 29, Issue 4, 2017, Pages 462-472

Intrusion detection model using fusion of chi-square feature selection and multi class SVM

Author keywords

Chi square feature selection; Cross validation; Intrusion detection; Radial basis kernel; Support vector machine; Variance

Indexed keywords


EID: 85006208829     PISSN: 13191578     EISSN: 22131248     Source Type: Journal    
DOI: 10.1016/j.jksuci.2015.12.004     Document Type: Article
Times cited : (379)

References (38)
  • 1
    • 79956097533 scopus 로고    scopus 로고
    • Mutual information based feature selection for intrusion detection systems
    • Amiri, Fatemeh, Mahdi, Mohammad, Yousefi, Rezaei, Mutual information based feature selection for intrusion detection systems. J. Network Comput. Appl. 34 (2011), 1184–1199.
    • (2011) J. Network Comput. Appl. , vol.34 , pp. 1184-1199
    • Amiri, F.1    Mahdi, M.2    Yousefi, R.3
  • 2
    • 85030126005 scopus 로고    scopus 로고
    • UCI repository of machine learning databases. Statlog Data Set, <>.
    • Blake, C., Keogh, E., Merz, C., 1998. UCI repository of machine learning databases. Statlog Data Set, < http://www.ics.uci.edu/mlearn/MLRepository.html[online]>.
    • (1998)
    • Blake, C.1    Keogh, E.2    Merz, C.3
  • 3
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Chebrolu, S., Abraham, A., Thomas, P., Feature deduction and ensemble design of intrusion detection systems. Comput. Soc. 24:4 (2005), 295–307.
    • (2005) Comput. Soc. , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, P.3
  • 4
    • 85030116433 scopus 로고    scopus 로고
    • Farrahi, Vahid S., Ahmadzadeh, Marzieh. KCMC: a hybrid learning approach for network intrusion detection using K-means clustering and multiple classifiers. Int. J. Comput. Appl. 124 (9),. Published by Foundation of Computer Science (FCS), NY, USA.
    • Farrahi, Vahid S., Ahmadzadeh, Marzieh, 2015. KCMC: a hybrid learning approach for network intrusion detection using K-means clustering and multiple classifiers. Int. J. Comput. Appl. 124 (9), pp. 18–23. Published by Foundation of Computer Science (FCS), NY, USA.
    • (2015) , pp. 18-23
  • 5
    • 77950036364 scopus 로고    scopus 로고
    • On the versatility of radial basis function neural networks: a case study in the field of intrusion detection
    • Fisch, D., Hofmann, A., Sick, B., On the versatility of radial basis function neural networks: a case study in the field of intrusion detection. Inf. Sci. 180 (2010), 2421–2439.
    • (2010) Inf. Sci. , vol.180 , pp. 2421-2439
    • Fisch, D.1    Hofmann, A.2    Sick, B.3
  • 7
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, Chih-Wei, Lin, Chih-Jen, A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks, 2002, 415–425.
    • (2002) IEEE Trans. Neural Networks , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 8
    • 0029267472 scopus 로고
    • State transition analysis: a rule-based intrusion detection approach
    • Ilgun, K., Kemmerer, R.A., Porras, P.A., State transition analysis: a rule-based intrusion detection approach. IEEE Trans. Software Eng. 21:3 (1995), 181–199.
    • (1995) IEEE Trans. Software Eng. , vol.21 , Issue.3 , pp. 181-199
    • Ilgun, K.1    Kemmerer, R.A.2    Porras, P.A.3
  • 9
    • 84899118527 scopus 로고    scopus 로고
    • Kasliwal, Bhavesh, Bhatia, Shraey, Saini, Shubham, Sumaiya Thaseen, I., Aswani Kumar, Ch. A hybrid anomaly detection model using G-LDA. In: 2014 IEEE International Advance Computing Conference
    • Kasliwal, Bhavesh, Bhatia, Shraey, Saini, Shubham, Sumaiya Thaseen, I., Aswani Kumar, Ch., 2014. A hybrid anomaly detection model using G-LDA. In: 2014 IEEE International Advance Computing Conference, pp. 288–293.
    • (2014) , pp. 288-293
  • 10
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchial clustering
    • Khan, L., Awad, M., Thuraisingham, B., A new intrusion detection system using support vector machines and hierarchial clustering. J. Very Large Databases 16:4 (2007), 507–521.
    • (2007) J. Very Large Databases , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 11
    • 84888315965 scopus 로고    scopus 로고
    • A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
    • Kim, G., Lee, S., Kim, S., A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Expert Syst. Appl. 41:4 (2014), 1690–1700.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1690-1700
    • Kim, G.1    Lee, S.2    Kim, S.3
  • 12
    • 84894281761 scopus 로고    scopus 로고
    • A novel hybrid KPCA and SVM with GA model for intrusion detection
    • Kuang, Fangjun, Xu, Weihong, Zhang, Siyang, A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft Comput., 2014.
    • (2014) Appl. Soft Comput.
    • Kuang, F.1    Xu, W.2    Zhang, S.3
  • 13
    • 12244285117 scopus 로고    scopus 로고
    • A comparative study of anomaly detection schemes in network intrusion detection
    • Proceedings of the third SIAM Conference on Data Mining
    • Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J., A comparative study of anomaly detection schemes in network intrusion detection., Proceedings of the third SIAM Conference on Data Mining, 2003.
    • (2003)
    • Lazarevic, A.1    Ertoz, L.2    Kumar, V.3    Ozgur, A.4    Srivastava, J.5
  • 15
    • 44249089794 scopus 로고    scopus 로고
    • Effective value of decision tree with KDD 99 intrusion detection datasets for intrusion detection system
    • 10th International Conference on Advanced Communication Technology (ICACT'08)
    • Lee, J.H., Lee, J.H., Sohn, S.G., Effective value of decision tree with KDD 99 intrusion detection datasets for intrusion detection system., 10th International Conference on Advanced Communication Technology (ICACT'08), 2008, 1170–1175.
    • (2008) , pp. 1170-1175
    • Lee, J.H.1    Lee, J.H.2    Sohn, S.G.3
  • 16
    • 84933183260 scopus 로고    scopus 로고
    • CANN: an intrusion detection system based on combining cluster centers and nearest neighbors
    • Lin, W.-C., Ke, Shih-Wen, Tsai, Chih, CANN: an intrusion detection system based on combining cluster centers and nearest neighbors. Knowledge-Based Syst. 78 (2015), 13–21.
    • (2015) Knowledge-Based Syst. , vol.78 , pp. 13-21
    • Lin, W.-C.1    Ke, S.-W.2    Tsai, C.3
  • 17
    • 85030093237 scopus 로고    scopus 로고
    • Madzarov, Gjorgji, Gjorgjevikj, Dejan, Chorbev, Ivan. Multi class classification using support vector machines in binary tree architecture. In: International Scientific Conference.
    • Madzarov, Gjorgji, Gjorgjevikj, Dejan, Chorbev, Ivan, 2008. Multi class classification using support vector machines in binary tree architecture. In: International Scientific Conference.
    • (2008)
  • 18
    • 10844230994 scopus 로고    scopus 로고
    • Sung, intelligent paradigms
    • Mukkamala, S., Sung, intelligent paradigms. J. Network Comput. Appl. 28:2 (2005), 167–182.
    • (2005) J. Network Comput. Appl. , vol.28 , Issue.2 , pp. 167-182
    • Mukkamala, S.1
  • 19
    • 84897435257 scopus 로고    scopus 로고
    • Effective approach toward intrusion detection system using data mining techniques
    • Nadiammai, G.V., Hemalatha, M., Effective approach toward intrusion detection system using data mining techniques. Egypt Inf. J. 15:1 (2014), 37–50.
    • (2014) Egypt Inf. J. , vol.15 , Issue.1 , pp. 37-50
    • Nadiammai, G.V.1    Hemalatha, M.2
  • 20
    • 33750804406 scopus 로고    scopus 로고
    • Anomaly detection based intrusion detection. In: Proceedings of the Third International Conference on Information Technology: New Generations (Itng'06).
    • Novikov, D., Yampolskiy, R.V., Reznik, L., 2006. Anomaly detection based intrusion detection. In: Proceedings of the Third International Conference on Information Technology: New Generations (Itng'06).
    • (2006)
    • Novikov, D.1    Yampolskiy, R.V.2    Reznik, L.3
  • 21
    • 85030098989 scopus 로고    scopus 로고
    • <>.
    • < http://nsl.cs.unb.ca/NSL-KDD/>.
  • 22
    • 85030083824 scopus 로고    scopus 로고
    • Panda, Mrutyunjaya, Abraham, Ajith, Patra, Manas Ranjan. A hybrid intelligent approach for network intrusion detection. In: International Conference on Communication Technology and System Design
    • Panda, Mrutyunjaya, Abraham, Ajith, Patra, Manas Ranjan, 2011. A hybrid intelligent approach for network intrusion detection. In: International Conference on Communication Technology and System Design, pp. 1–9.
    • (2011) , pp. 1-9
  • 23
    • 33750514606 scopus 로고    scopus 로고
    • Modelling intrusion detection system using hybrid intelligent systems
    • Peddabachigari, S., Abraham, A., Grosan, C., Thomas, J., Modelling intrusion detection system using hybrid intelligent systems. J. Comput. Network Appl. 30:1 (2007), 114–132.
    • (2007) J. Comput. Network Appl. , vol.30 , Issue.1 , pp. 114-132
    • Peddabachigari, S.1    Abraham, A.2    Grosan, C.3    Thomas, J.4
  • 24
    • 33750528950 scopus 로고    scopus 로고
    • Intrusion detection using a fuzzy genetics based learning algorithm
    • Saniee Abadeh, M., Habibi, J., Lucas, C., Intrusion detection using a fuzzy genetics based learning algorithm. J. Network Comput. Appl. 30:1 (2007), 414–428.
    • (2007) J. Network Comput. Appl. , vol.30 , Issue.1 , pp. 414-428
    • Saniee Abadeh, M.1    Habibi, J.2    Lucas, C.3
  • 26
    • 85030130071 scopus 로고    scopus 로고
    • Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain
    • Saxena, Harshit, Richariya, Vineet, Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain. Int. J. Comput. Appl. 98:6 (2014), 25–29.
    • (2014) Int. J. Comput. Appl. , vol.98 , Issue.6 , pp. 25-29
    • Saxena, H.1    Richariya, V.2
  • 27
    • 85021084002 scopus 로고    scopus 로고
    • Intrusion detection system using feature selection and classification technique
    • Senthilnayaki, Balakrishnan, Venkatalakshmi, K., Kannan, A., Intrusion detection system using feature selection and classification technique. Int. J. Comput. Sci. Appl. 3:4 (2014), 145–151, 10.14355/ijcsa.2014.0304.02.
    • (2014) Int. J. Comput. Sci. Appl. , vol.3 , Issue.4 , pp. 145-151
    • Senthilnayaki, B.1    Venkatalakshmi, K.2    Kannan, A.3
  • 28
    • 69249216488 scopus 로고    scopus 로고
    • An adaptive genetic based signature learning system intrusion detection
    • Shafi, K., Abbass, H.A., An adaptive genetic based signature learning system intrusion detection. Expert Syst. Appl. 36:10 (2009), 12036–12043.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 12036-12043
    • Shafi, K.1    Abbass, H.A.2
  • 30
    • 85030109164 scopus 로고    scopus 로고
    • Aswani Kumar, Ch., accepted for publication. Improving accuracy of intrusion detection model using PCA and optimized SVM. CIT J. Comput. Inf. Technol.
    • Sumaiya Thaseen, I., Aswani Kumar, Ch., accepted for publication. Improving accuracy of intrusion detection model using PCA and optimized SVM. CIT J. Comput. Inf. Technol.
    • Sumaiya Thaseen, I.1
  • 32
    • 34447639073 scopus 로고    scopus 로고
    • A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers
    • Toosi, A.N., Kahani, M., A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers. Comput. Commun. 30 (2007), 2201–2212.
    • (2007) Comput. Commun. , vol.30 , pp. 2201-2212
    • Toosi, A.N.1    Kahani, M.2
  • 33
    • 84941079784 scopus 로고    scopus 로고
    • A new approach to intrusion detection using artificial neural networks and fuzzy clustering
    • Wang, G., Hao, J.X., Ma, J., Huang, L.H., A new approach to intrusion detection using artificial neural networks and fuzzy clustering. Expert Syst. Appl. 37 (2010), 6225–6232.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6225-6232
    • Wang, G.1    Hao, J.X.2    Ma, J.3    Huang, L.H.4
  • 36
    • 85030085826 scopus 로고    scopus 로고
    • Robustness of the Markov chain model for cyber attack detection
    • Ye, N., Borror, Y.Z.C.M., Robustness of the Markov chain model for cyber attack detection. IEEE Trans. Reliab., 116, 2004, 12353.
    • (2004) IEEE Trans. Reliab. , vol.116 , pp. 12353
    • Ye, N.1    Borror, Y.Z.C.M.2
  • 37
    • 70849116937 scopus 로고    scopus 로고
    • Lightweight IDS based on feature selection and IDS classification scheme
    • Proceedings of 2009 International Conference on Computational Science and Engineering
    • Zaman, Lightweight IDS based on feature selection and IDS classification scheme., Proceedings of 2009 International Conference on Computational Science and Engineering, 2009, 365–370.
    • (2009) , pp. 365-370
    • Zaman1
  • 38
    • 21844433474 scopus 로고    scopus 로고
    • Application of online-training SVMs for real-time intrusion detection with different considerations
    • Zhang, Z., Shen, H., Application of online-training SVMs for real-time intrusion detection with different considerations. Comput. Commun. 28:12 (2005), 1428–1442.
    • (2005) Comput. Commun. , vol.28 , Issue.12 , pp. 1428-1442
    • Zhang, Z.1    Shen, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.