메뉴 건너뛰기




Volumn 69, Issue , 2016, Pages 1-7

Normalized residual-based constant false-alarm rate outlier detection

Author keywords

Constant false alarm rate (CFAR); Normalized residual; Outlier detection; Supervised

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA HANDLING; ERRORS; IMAGE RESOLUTION; LEARNING SYSTEMS; STATISTICS;

EID: 84946616003     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2015.10.002     Document Type: Article
Times cited : (13)

References (34)
  • 7
    • 84905002847 scopus 로고    scopus 로고
    • Entropy-based outlier detection using semi-supervised approach with few positive examples
    • Daneshpazhouh A., Sami A. Entropy-based outlier detection using semi-supervised approach with few positive examples Patt. Recog. Lett. 49 2014 77 84
    • (2014) Patt. Recog. Lett. , vol.49 , pp. 77-84
    • Daneshpazhouh, A.1    Sami, A.2
  • 8
    • 79251566224 scopus 로고    scopus 로고
    • Universal outlier detection for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) data
    • Duncan J., Dabiri D., Hove J., Gharib M. Universal outlier detection for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) data Measur. Sci. Tech. 21 2010 1 5
    • (2010) Measur. Sci. Tech. , vol.21 , pp. 1-5
    • Duncan, J.1    Dabiri, D.2    Hove, J.3    Gharib, M.4
  • 13
    • 84855443761 scopus 로고    scopus 로고
    • Identifying mislabeled training data with the aid of unlabeled data
    • Guan D., Yuan W., Lee Y.-K. Identifying mislabeled training data with the aid of unlabeled data Appl. Intell. 35 2011 345 358
    • (2011) Appl. Intell. , vol.35 , pp. 345-358
    • Guan, D.1    Yuan, W.2    Lee, Y.-K.3
  • 15
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster-based local outliers
    • He Z., Xu X., Deng S. Discovering cluster-based local outliers Patt. Recogn. Lett. 24 2003 1641 1650
    • (2003) Patt. Recogn. Lett. , vol.24 , pp. 1641-1650
    • He, Z.1    Xu, X.2    Deng, S.3
  • 19
    • 84948141376 scopus 로고    scopus 로고
    • A mixture approach to novelty detection using training data with outliers
    • Freiburg, Germany
    • Lauer M. A mixture approach to novelty detection using training data with outliers Proceedings of 12th European Conference on Machine Learning (ECML) Freiburg, Germany 2001 300 311
    • (2001) Proceedings of 12th European Conference on Machine Learning (ECML) , pp. 300-311
    • Lauer, M.1
  • 20
    • 34548241296 scopus 로고    scopus 로고
    • CFAR outlier detection with forward methods
    • Lehtomäki J.J. CFAR outlier detection with forward methods IEEE Trans. Signal Proces. 55 9 2007 4702 4706
    • (2007) IEEE Trans. Signal Proces. , vol.55 , Issue.9 , pp. 4702-4706
    • Lehtomäki, J.J.1
  • 21
    • 84886567160 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science Irvine, CA
    • Lichman M. UCI Machine Learning Repository 2013 University of California, School of Information and Computer Science Irvine, CA http://archive.ics.uci.edu/ml
    • (2013) UCI Machine Learning Repository
    • Lichman, M.1
  • 23
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian O.L., Wolberg W.H. Cancer diagnosis via linear programming SIAM News 23 5 1990 1 18
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 24
    • 0442312143 scopus 로고    scopus 로고
    • A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets
    • Miller D.J., Browning J. A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets IEEE Trans. Patt. Anal. Mach. Intel. 25 11 2003 1468 1483
    • (2003) IEEE Trans. Patt. Anal. Mach. Intel. , vol.25 , Issue.11 , pp. 1468-1483
    • Miller, D.J.1    Browning, J.2
  • 30
    • 28044437343 scopus 로고    scopus 로고
    • Universal outlier detection for PIV data
    • Westerweel J., Scarano F. Universal outlier detection for PIV data Exper. Fluids 39 2005 1096 1100
    • (2005) Exper. Fluids , vol.39 , pp. 1096-1100
    • Westerweel, J.1    Scarano, F.2
  • 31
    • 77953128244 scopus 로고    scopus 로고
    • Semi-supervised outlier detection based on fuzzy rough C-means clustering
    • Xue Z., Shang Y., Feng A. Semi-supervised outlier detection based on fuzzy rough C-means clustering Math. Comput. Simul. 80 9 2010 1911 1921
    • (2010) Math. Comput. Simul. , vol.80 , Issue.9 , pp. 1911-1921
    • Xue, Z.1    Shang, Y.2    Feng, A.3
  • 32
    • 84863671362 scopus 로고    scopus 로고
    • Comparison of unintentional frequency and phase modulation features for specific emitter identification
    • Ye H.H., Liu Z., Jiang W.L. Comparison of unintentional frequency and phase modulation features for specific emitter identification Electron. Lett. 48 14 2012 875 876
    • (2012) Electron. Lett. , vol.48 , Issue.14 , pp. 875-876
    • Ye, H.H.1    Liu, Z.2    Jiang, W.L.3
  • 33
    • 67650671551 scopus 로고    scopus 로고
    • A new local distance-based outlier detection approach for scattered real-world data
    • Zhang K., Hutter M., Jin H. A new local distance-based outlier detection approach for scattered real-world data Adv. Knowl. Discovery Data Min. 2009 813 822
    • (2009) Adv. Knowl. Discovery Data Min. , pp. 813-822
    • Zhang, K.1    Hutter, M.2    Jin, H.3
  • 34
    • 80053138116 scopus 로고    scopus 로고
    • Anomaly detection with score functions based on nearest neighbor graphs
    • Zhao M., Saligrama V. Anomaly detection with score functions based on nearest neighbor graphs Adv. Neural Infor. Proces. Syst. 22 2009 1 10
    • (2009) Adv. Neural Infor. Proces. Syst. , vol.22 , pp. 1-10
    • Zhao, M.1    Saligrama, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.