메뉴 건너뛰기




Volumn 33, Issue , 2015, Pages 348-359

Evolving statistical rulesets for network intrusion detection

Author keywords

DARPA; Genetic algorithm; Interval rule based; Intrusion detection; NSL KDD

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; DENIAL-OF-SERVICE ATTACK; GENETIC ALGORITHMS; HUMAN COMPUTER INTERACTION; LEARNING SYSTEMS; NETWORK SECURITY;

EID: 84929620760     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.04.041     Document Type: Article
Times cited : (59)

References (48)
  • 1
    • 0034300682 scopus 로고    scopus 로고
    • Intrusion detection using autonomous agents
    • E.H. Spafford, and D. Zamboni Intrusion detection using autonomous agents Comput. Netw. 34 4 2000 547 570
    • (2000) Comput. Netw. , vol.34 , Issue.4 , pp. 547-570
    • Spafford, E.H.1    Zamboni, D.2
  • 2
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: A review
    • S.X. Wu, and W. Banzhaf The use of computational intelligence in intrusion detection systems: a review Appl. Soft Comput. 10 1 2010 1 35
    • (2010) Appl. Soft Comput. , vol.10 , Issue.1 , pp. 1-35
    • Wu, S.X.1    Banzhaf, W.2
  • 4
    • 69249230890 scopus 로고    scopus 로고
    • Intrusion detection by machine learning: A review
    • C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin Intrusion detection by machine learning: a review Expert Syst. Appl. 36 10 2009 11994 12000
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 11994-12000
    • Tsai, C.-F.1    Hsu, Y.-F.2    Lin, C.-Y.3    Lin, W.-Y.4
  • 5
    • 78650169163 scopus 로고    scopus 로고
    • The use of artificial intelligence based techniques for intrusion detection: A review
    • G. Kumar, K. Kumar, and M. Sachdeva The use of artificial intelligence based techniques for intrusion detection: a review Artif. Intell. Rev. 34 4 2010 369 387
    • (2010) Artif. Intell. Rev. , vol.34 , Issue.4 , pp. 369-387
    • Kumar, G.1    Kumar, K.2    Sachdeva, M.3
  • 6
    • 27144442442 scopus 로고    scopus 로고
    • Discovering interesting patterns for investment decision making with GLOWER: A genetic learner overlaid with entropy reduction
    • V. Dhar, D. Chou, and F. Provost Discovering interesting patterns for investment decision making with GLOWER: a genetic learner overlaid with entropy reduction Data Min. Knowl. Discov. 4 4 2000 251 280
    • (2000) Data Min. Knowl. Discov. , vol.4 , Issue.4 , pp. 251-280
    • Dhar, V.1    Chou, D.2    Provost, F.3
  • 8
    • 35248852487 scopus 로고    scopus 로고
    • Evolving multiple discretizations with adaptive intervals for a Pittsburgh rule-based learning classifier system
    • Springer
    • J. Bacardit, and J.M. Garrell Evolving multiple discretizations with adaptive intervals for a Pittsburgh rule-based learning classifier system Genetic and Evolutionary Computation-GECCO 2003 2003 Springer 1818 1831
    • (2003) Genetic and Evolutionary Computation-GECCO 2003 , pp. 1818-1831
    • Bacardit, J.1    Garrell, J.M.2
  • 9
    • 70349632412 scopus 로고    scopus 로고
    • Performance and efficiency of memetic Pittsburgh learning classifier systems
    • J. Bacardit, and N. Krasnogor Performance and efficiency of memetic Pittsburgh learning classifier systems Evol. comput. 17 3 2009 307 342
    • (2009) Evol. Comput. , vol.17 , Issue.3 , pp. 307-342
    • Bacardit, J.1    Krasnogor, N.2
  • 11
    • 84929640982 scopus 로고    scopus 로고
    • KDD99
    • KDD99, http://kdd.ccs.uci.edu/databases/kddcup99/task.html.
  • 14
    • 84929640983 scopus 로고    scopus 로고
    • CAIDA
    • CAIDA, http://www.caida.org/data/passive/ddos-20070804-dataset.xml.
  • 16
    • 79957530146 scopus 로고    scopus 로고
    • Low-rate DDoS attacks detection and traceback by using new information metrics
    • Y. Xiang, K. Li, and W. Zhou Low-rate DDoS attacks detection and traceback by using new information metrics IEEE Trans. Inform. Forensics Secur. 6 2 2011 426 437
    • (2011) IEEE Trans. Inform. Forensics Secur. , vol.6 , Issue.2 , pp. 426-437
    • Xiang, Y.1    Li, K.2    Zhou, W.3
  • 20
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • W. Lee, and S.J. Stolfo A framework for constructing features and models for intrusion detection systems ACM Trans. Inform. Syst. Secur. 3 4 2000 227 261
    • (2000) ACM Trans. Inform. Syst. Secur. , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 21
    • 84885780432 scopus 로고    scopus 로고
    • Evaluation of an adaptive genetic-based signature extraction system for network intrusion detection
    • K. Shafi, and H.A. Abbass Evaluation of an adaptive genetic-based signature extraction system for network intrusion detection Pattern Anal. Appl. 16 4 2013 549 566
    • (2013) Pattern Anal. Appl. , vol.16 , Issue.4 , pp. 549-566
    • Shafi, K.1    Abbass, H.A.2
  • 27
    • 84929640984 scopus 로고    scopus 로고
    • MIT Lincoln Laboratory DARPA Dataset 2015 http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/index.html
    • (2015) DARPA Dataset
    • Lincoln Laboratory, M.1
  • 28
    • 4344588856 scopus 로고    scopus 로고
    • Detecting new forms of network intrusion using genetic programming
    • W. Lu, and I. Traore Detecting new forms of network intrusion using genetic programming Comput. Intell. 20 3 2004 475 494
    • (2004) Comput. Intell. , vol.20 , Issue.3 , pp. 475-494
    • Lu, W.1    Traore, I.2
  • 29
    • 0347411204 scopus 로고    scopus 로고
    • Combining boosting and evolutionary algorithms for learning of fuzzy classification rules
    • F. Hoffmann Combining boosting and evolutionary algorithms for learning of fuzzy classification rules Fuzzy Sets Syst. 141 1 2004 47 58
    • (2004) Fuzzy Sets Syst. , vol.141 , Issue.1 , pp. 47-58
    • Hoffmann, F.1
  • 31
    • 69249216488 scopus 로고    scopus 로고
    • An adaptive genetic-based signature learning system for intrusion detection
    • K. Shafi, and H.A. Abbass An adaptive genetic-based signature learning system for intrusion detection Expert Syst. Appl. 36 10 2009 12036 12043
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 12036-12043
    • Shafi, K.1    Abbass, H.A.2
  • 32
    • 38049120100 scopus 로고    scopus 로고
    • Bloat control and generalization pressure using the minimum description length principle for a Pittsburgh approach learning classifier system
    • Springer
    • J. Bacardit, and J.M. Garrell Bloat control and generalization pressure using the minimum description length principle for a Pittsburgh approach learning classifier system Learning Classifier Systems 2007 Springer 59 79
    • (2007) Learning Classifier Systems , pp. 59-79
    • Bacardit, J.1    Garrell, J.M.2
  • 34
    • 0042643357 scopus 로고    scopus 로고
    • Get real! XCS with continuous-valued inputs
    • Springer
    • S.W. Wilson Get real! XCS with continuous-valued inputs Learning Classifier Systems 2000 Springer 209 219
    • (2000) Learning Classifier Systems , pp. 209-219
    • Wilson, S.W.1
  • 35
    • 33644537355 scopus 로고    scopus 로고
    • Immunity-based intrusion detection system design, vulnerability analysis, and GENERTIA's genetic arms race
    • ACM
    • H. Hou, and G. Dozier Immunity-based intrusion detection system design, vulnerability analysis, and GENERTIA's genetic arms race Proceedings of the 2005 ACM Symposium on Applied Computing 2005 ACM 952 956
    • (2005) Proceedings of the 2005 ACM Symposium on Applied Computing , pp. 952-956
    • Hou, H.1    Dozier, G.2
  • 38
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection, vol. 97
    • Nashville, USA
    • M. Kubat, and S. Matwin Addressing the curse of imbalanced training sets: one-sided selection, vol. 97 ICML Nashville, USA 1997 179 186
    • (1997) ICML , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 39
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • S. Garcí a, and F. Herrera Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy Evol. Comput. 17 3 2009 275 306
    • (2009) Evol. Comput. , vol.17 , Issue.3 , pp. 275-306
    • Garcí, A.S.1    Herrera, F.2
  • 43
    • 84874149164 scopus 로고    scopus 로고
    • Intrusion detection using naive Bayes classifier with feature reduction
    • S. Mukherjee, and N. Sharma Intrusion detection using naive Bayes classifier with feature reduction Proc. Technol. 4 2012 119 128
    • (2012) Proc. Technol. , vol.4 , pp. 119-128
    • Mukherjee, S.1    Sharma, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.