-
2
-
-
84867317839
-
Developmental biology. Physical biology returns to morphogenesis
-
2 Keller, R., Developmental biology. Physical biology returns to morphogenesis. Science 338 (2012), 201–203.
-
(2012)
Science
, vol.338
, pp. 201-203
-
-
Keller, R.1
-
3
-
-
84929464060
-
E-cadherin junctions as active mechanical integrators in tissue dynamics
-
3 Lecuit, T., Yap, A.S., E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat. Cell Biol. 17 (2015), 533–539.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 533-539
-
-
Lecuit, T.1
Yap, A.S.2
-
4
-
-
84878324673
-
Forces in tissue morphogenesis and patterning
-
4 Heisenberg, C.P., Bellaïche, Y., Forces in tissue morphogenesis and patterning. Cell 153 (2013), 948–962.
-
(2013)
Cell
, vol.153
, pp. 948-962
-
-
Heisenberg, C.P.1
Bellaïche, Y.2
-
5
-
-
84962030299
-
Force matters: biomechanical regulation of cell invasion and migration in disease
-
5 Kai, F., et al. Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol. 26 (2016), 486–497.
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 486-497
-
-
Kai, F.1
-
6
-
-
77957241846
-
Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions
-
6 Kobayashi, T., Sokabe, M., Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr. Opin. Cell Biol. 22 (2010), 669–676.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 669-676
-
-
Kobayashi, T.1
Sokabe, M.2
-
7
-
-
58049191448
-
Environmental sensing through focal adhesions
-
7 Geiger, B., et al. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10 (2009), 21–33.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 21-33
-
-
Geiger, B.1
-
8
-
-
84962235182
-
Converging and unique mechanisms of mechanotransduction at adhesion sites
-
8 Han, M.K., de Rooij, J., Converging and unique mechanisms of mechanotransduction at adhesion sites. Trends Cell Biol. 26 (2016), 612–623.
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 612-623
-
-
Han, M.K.1
de Rooij, J.2
-
9
-
-
84874970891
-
The functions and consequences of force at kinetochores
-
9 Rago, F., Cheeseman, I.M., The functions and consequences of force at kinetochores. J. Cell Biol. 200 (2013), 557–565.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 557-565
-
-
Rago, F.1
Cheeseman, I.M.2
-
10
-
-
84905167805
-
The cellular mastermind(?)-mechanotransduction and the nucleus
-
10 Kaminski, A., et al. The cellular mastermind(?)-mechanotransduction and the nucleus. Prog. Mol. Biol. Transl. Sci. 126 (2014), 157–203.
-
(2014)
Prog. Mol. Biol. Transl. Sci.
, vol.126
, pp. 157-203
-
-
Kaminski, A.1
-
11
-
-
84964802266
-
Measuring cell-generated forces: a guide to the available tools
-
11 Polacheck, W.J., Chen, C.S., Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13 (2016), 415–423.
-
(2016)
Nat. Methods
, vol.13
, pp. 415-423
-
-
Polacheck, W.J.1
Chen, C.S.2
-
12
-
-
84936084959
-
Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes
-
12 Jurchenko, C., Salaita, K.S., Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol. 35 (2015), 2570–2582.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 2570-2582
-
-
Jurchenko, C.1
Salaita, K.S.2
-
13
-
-
44349176807
-
A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ
-
13 Meng, F., et al. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275 (2008), 3072–3087.
-
(2008)
FEBS J.
, vol.275
, pp. 3072-3087
-
-
Meng, F.1
-
14
-
-
77954486800
-
Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics
-
14 Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466 (2010), 263–266.
-
(2010)
Nature
, vol.466
, pp. 263-266
-
-
Grashoff, C.1
-
15
-
-
79251591301
-
Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor
-
15 Meng, F., Sachs, F., Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J. Cell Sci. 124 (2011), 261–269.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 261-269
-
-
Meng, F.1
Sachs, F.2
-
16
-
-
84858126679
-
Orientation-based FRET sensor for real-time imaging of cellular forces
-
16 Meng, F., Sachs, F., Orientation-based FRET sensor for real-time imaging of cellular forces. J. Cell Sci. 125 (2012), 743–750.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 743-750
-
-
Meng, F.1
Sachs, F.2
-
17
-
-
84948715926
-
Extracellular rigidity sensing by talin isoform-specific mechanical linkages
-
17 Austen, K., et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17 (2015), 1597–1606.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1597-1606
-
-
Austen, K.1
-
18
-
-
84960494069
-
Spider silk peptide is a compact, linear nanospring ideal for intracellular tension sensing
-
18 Brenner, M.D., et al. Spider silk peptide is a compact, linear nanospring ideal for intracellular tension sensing. Nano Lett. 16 (2016), 2096–2102.
-
(2016)
Nano Lett.
, vol.16
, pp. 2096-2102
-
-
Brenner, M.D.1
-
19
-
-
84925534372
-
How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors
-
19 Cost, A-L., et al. How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell. Mol. Bioeng. 8 (2015), 96–105.
-
(2015)
Cell. Mol. Bioeng.
, vol.8
, pp. 96-105
-
-
Cost, A.-L.1
-
20
-
-
84961133117
-
Investigating piconewton forces in cells by FRET-based molecular force microscopy
-
Published online March 12, 2016
-
20 Freikamp, A., et al. Investigating piconewton forces in cells by FRET-based molecular force microscopy. J Struct Biol., 2016, 10.1016/j.jsb.2016.03.011 Published online March 12, 2016.
-
(2016)
J Struct Biol.
-
-
Freikamp, A.1
-
21
-
-
3943069115
-
Mechanical processes in biochemistry
-
21 Bustamante, C., et al. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73 (2004), 705–748.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 705-748
-
-
Bustamante, C.1
-
22
-
-
84934444360
-
Generation and analysis of biosensors to measure mechanical forces within cells
-
22 Austen, K., et al. Generation and analysis of biosensors to measure mechanical forces within cells. Methods Mol Biol 1066 (2013), 169–184.
-
(2013)
Methods Mol Biol
, vol.1066
, pp. 169-184
-
-
Austen, K.1
-
23
-
-
84921851331
-
Construction, imaging, and analysis of FRET-based tension sensors in living cells
-
23 LaCroix, A.S., et al. Construction, imaging, and analysis of FRET-based tension sensors in living cells. Methods Cell Biol 125 (2015), 161–186.
-
(2015)
Methods Cell Biol
, vol.125
, pp. 161-186
-
-
LaCroix, A.S.1
-
24
-
-
84938746663
-
Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch
-
24 Case, L.B., Waterman, C.M., Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17 (2015), 955–963.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 955-963
-
-
Case, L.B.1
Waterman, C.M.2
-
25
-
-
0018692430
-
A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells
-
25 Geiger, B., A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18 (1979), 193–205.
-
(1979)
Cell
, vol.18
, pp. 193-205
-
-
Geiger, B.1
-
26
-
-
84880801392
-
Talins and kindlins: partners in integrin-mediated adhesion
-
26 Calderwood, D.A., et al. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14 (2013), 503–517.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 503-517
-
-
Calderwood, D.A.1
-
27
-
-
84948718179
-
Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly
-
27 Horton, E.R., et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17 (2015), 1577–1587.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1577-1587
-
-
Horton, E.R.1
-
28
-
-
33846697554
-
Differential transmission of actin motion within focal adhesions
-
28 Hu, K., et al. Differential transmission of actin motion within focal adhesions. Science 315 (2007), 111–115.
-
(2007)
Science
, vol.315
, pp. 111-115
-
-
Hu, K.1
-
29
-
-
57049151271
-
Fluctuations of intracellular forces during cell protrusion
-
29 Ji, L., et al. Fluctuations of intracellular forces during cell protrusion. Nat. Cell Biol. 10 (2008), 1393–1400.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1393-1400
-
-
Ji, L.1
-
30
-
-
84880673342
-
Vinculin tension distributions of individual stress fibers within cell-matrix adhesions
-
30 Chang, C.W., Kumar, S., Vinculin tension distributions of individual stress fibers within cell-matrix adhesions. J. Cell Sci. 126 (2013), 3021–3030.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 3021-3030
-
-
Chang, C.W.1
Kumar, S.2
-
31
-
-
84932599537
-
A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime
-
31 Hernández-Varas, P., et al. A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nat. Commu., 6, 2015, 7524.
-
(2015)
Nat. Commu.
, vol.6
, pp. 7524
-
-
Hernández-Varas, P.1
-
32
-
-
84983315199
-
Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity
-
32 Kumar, A., et al. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J. Cell Biol. 213 (2016), 371–383.
-
(2016)
J. Cell Biol.
, vol.213
, pp. 371-383
-
-
Kumar, A.1
-
33
-
-
67650288199
-
Biochemical and structural properties of the integrin-associated cytoskeletal protein talin
-
33 Critchley, D.R., Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu. Rev. Biophys. 38 (2009), 235–254.
-
(2009)
Annu. Rev. Biophys.
, vol.38
, pp. 235-254
-
-
Critchley, D.R.1
-
34
-
-
84898467976
-
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
-
34 Yao, M.X., et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep., 4, 2014, 4610.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4610
-
-
Yao, M.X.1
-
35
-
-
59149094538
-
Stretching single talin rod molecules activates vinculin binding
-
35 del Rio, A., et al. Stretching single talin rod molecules activates vinculin binding. Science 323 (2009), 638–641.
-
(2009)
Science
, vol.323
, pp. 638-641
-
-
del Rio, A.1
-
36
-
-
84873637356
-
Talin1 has unique expression versus Talin 2 in the heart and modifies the hypertrophic response to pressure overload
-
36 Manso, A.M., et al. Talin1 has unique expression versus Talin 2 in the heart and modifies the hypertrophic response to pressure overload. J. Biol. Chem. 288 (2013), 4252–4264.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 4252-4264
-
-
Manso, A.M.1
-
37
-
-
84994635744
-
α-actinin links ECM rigidity sensing contractile units with periodic cell edge retractions
-
Published online April 27, 2016
-
37 Meacci, G., et al. α-actinin links ECM rigidity sensing contractile units with periodic cell edge retractions. Mol Biol Cell., 2016, 10.1091/mbc.E16-02-0107 Published online April 27, 2016.
-
(2016)
Mol Biol Cell.
-
-
Meacci, G.1
-
38
-
-
84964939465
-
Kindlin-2 directly binds actin and regulates integrin outside-in signaling
-
38 Bledzka, K., et al. Kindlin-2 directly binds actin and regulates integrin outside-in signaling. J. Cell Biol. 213 (2016), 97–108.
-
(2016)
J. Cell Biol.
, vol.213
, pp. 97-108
-
-
Bledzka, K.1
-
39
-
-
77953123743
-
α-Catenin as a tension transducer that induces adherens junction development
-
39 Yonemura, S., et al. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12 (2010), 533–542.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 533-542
-
-
Yonemura, S.1
-
40
-
-
84905656092
-
Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens
-
40 Leerberg, J.M., et al. Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Curr. Biol. 24 (2014), 1689–1699.
-
(2014)
Curr. Biol.
, vol.24
, pp. 1689-1699
-
-
Leerberg, J.M.1
-
41
-
-
84950158923
-
Towards a dynamic understanding of cadherin-based mechanobiology
-
41 Hoffman, B.D., Yap, A.S., Towards a dynamic understanding of cadherin-based mechanobiology. Trends Cell Biol. 25 (2015), 803–814.
-
(2015)
Trends Cell Biol.
, vol.25
, pp. 803-814
-
-
Hoffman, B.D.1
Yap, A.S.2
-
42
-
-
84864506988
-
E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch
-
42 Borghi, N., et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 12568–12573.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 12568-12573
-
-
Borghi, N.1
-
43
-
-
84878611663
-
Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1
-
43 Conway, D.E., et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23 (2013), 1024–1030.
-
(2013)
Curr. Biol.
, vol.23
, pp. 1024-1030
-
-
Conway, D.E.1
-
44
-
-
84925867688
-
Control of cell-cell forces and collective cell dynamics by the intercellular adhesome
-
44 Bazellières, E., et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat. Cell Biol. 17 (2015), 409–420.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 409-420
-
-
Bazellières, E.1
-
45
-
-
84974694613
-
25 years of tension over actin binding to the cadherin cell adhesion complex: the devil is in the details
-
45 Nelson, W.J., Weis, W.I., 25 years of tension over actin binding to the cadherin cell adhesion complex: the devil is in the details. Trends Cell Biol. 26 (2016), 471–473.
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 471-473
-
-
Nelson, W.J.1
Weis, W.I.2
-
46
-
-
84866882608
-
Actin cortex mechanics and cellular morphogenesis
-
46 Salbreux, G., et al. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22 (2012), 536–545.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 536-545
-
-
Salbreux, G.1
-
47
-
-
77955769377
-
The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life
-
47 Baines, A.J., The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244 (2010), 99–131.
-
(2010)
Protoplasma
, vol.244
, pp. 99-131
-
-
Baines, A.J.1
-
48
-
-
84895503972
-
Mechanical control of the sense of touch by β-spectrin
-
48 Krieg, M., et al. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 16 (2014), 224–233.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 224-233
-
-
Krieg, M.1
-
49
-
-
84872796017
-
Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons
-
49 Xu, K., et al. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339 (2013), 452–456.
-
(2013)
Science
, vol.339
, pp. 452-456
-
-
Xu, K.1
-
50
-
-
85044694641
-
FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis
-
50 Kelley, M., et al. FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. Elife, 4, 2015, 06565.
-
(2015)
Elife
, vol.4
, pp. 06565
-
-
Kelley, M.1
-
51
-
-
84975717662
-
Wide and high resolution tension measurement using FRET in embryo
-
51 Yamashita, S., et al. Wide and high resolution tension measurement using FRET in embryo. Sci. Rep., 6, 2016, 28535.
-
(2016)
Sci. Rep.
, vol.6
, pp. 28535
-
-
Yamashita, S.1
-
52
-
-
84906794588
-
Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth
-
52 Ye, N., et al. Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth. Exp. Cell Res. 327 (2014), 57–67.
-
(2014)
Exp. Cell Res.
, vol.327
, pp. 57-67
-
-
Ye, N.1
-
53
-
-
84940211541
-
The actinin family of actin cross-linking proteins – a genetic perspective
-
53 Murphy, A.C., Young, P.W., The actinin family of actin cross-linking proteins – a genetic perspective. Cell Biosci., 5, 2015, 49.
-
(2015)
Cell Biosci.
, vol.5
, pp. 49
-
-
Murphy, A.C.1
Young, P.W.2
-
54
-
-
84877946982
-
Defining single molecular forces required to activate integrin and notch signaling
-
54 Wang, X., Ha, T., Defining single molecular forces required to activate integrin and notch signaling. Science 340 (2013), 991–994.
-
(2013)
Science
, vol.340
, pp. 991-994
-
-
Wang, X.1
Ha, T.2
-
55
-
-
84984907970
-
Ultrasensitivity of cell adhesion to the presence of mechanically strong ligands
-
55 Roein-Peikar, M., et al. Ultrasensitivity of cell adhesion to the presence of mechanically strong ligands. Phys. Rev. X, 6, 2016, 011001.
-
(2016)
Phys. Rev. X
, vol.6
, pp. 011001
-
-
Roein-Peikar, M.1
-
56
-
-
84939568052
-
Controlling cell geometry affects the spatial distribution of load across vinculin
-
56 Rothenberg, K.E., et al. Controlling cell geometry affects the spatial distribution of load across vinculin. Cell. Mol. Bioeng. 8 (2015), 364–382.
-
(2015)
Cell. Mol. Bioeng.
, vol.8
, pp. 364-382
-
-
Rothenberg, K.E.1
-
57
-
-
84904436467
-
The cancer glycocalyx mechanically primes integrin-mediated growth and survival
-
57 Paszek, M.J., et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511 (2014), 319–325.
-
(2014)
Nature
, vol.511
, pp. 319-325
-
-
Paszek, M.J.1
-
58
-
-
84867084870
-
Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions
-
58 Rossier, O., et al. Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14 (2012), 1057–1067.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1057-1067
-
-
Rossier, O.1
-
59
-
-
84884243072
-
Molecular tension sensors report forces generated by single integrin molecules in living cells
-
59 Morimatsu, M., et al. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13 (2013), 3985–3989.
-
(2013)
Nano Lett.
, vol.13
, pp. 3985-3989
-
-
Morimatsu, M.1
-
60
-
-
84927127052
-
Visualizing the interior architecture of focal adhesions with high-resolution traction maps
-
60 Morimatsu, M., et al. Visualizing the interior architecture of focal adhesions with high-resolution traction maps. Nano Lett. 15 (2015), 2220–2228.
-
(2015)
Nano Lett.
, vol.15
, pp. 2220-2228
-
-
Morimatsu, M.1
-
61
-
-
84961226074
-
How the kinetochore couples microtubule force and centromere stretch to move chromosomes
-
61 Suzuki, A., et al. How the kinetochore couples microtubule force and centromere stretch to move chromosomes. Nat. Cell Biol. 18 (2016), 382–392.
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 382-392
-
-
Suzuki, A.1
-
62
-
-
84953409777
-
Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension
-
62 Arsenovic, P.T., et al. Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110 (2016), 34–43.
-
(2016)
Biophys. J.
, vol.110
, pp. 34-43
-
-
Arsenovic, P.T.1
|