-
1
-
-
84990066884
-
-
Caffe model zoo. http://caffe.berkeleyvision.org/modelzoo.html.
-
Caffe Model Zoo
-
-
-
2
-
-
84971577321
-
-
arXiv:1603.04467
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Largescale machine learning on heterogeneous distributed systems. arXiv, 1603.04467, 2016.
-
(2016)
TensorFlow: Largescale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mané, D.21
Monga, R.22
Moore, S.23
Murray, D.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.31
Vanhoucke, V.32
Vasudevan, V.33
Viégas, F.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.40
more..
-
3
-
-
84971463350
-
-
arXiv:1512.02595
-
D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu. Deep speech 2: End-to-end speech recognition in English and Mandarin. arXiv, 1512.02595, 2015.
-
(2015)
Deep Speech 2: End-to-end Speech Recognition in English and Mandarin
-
-
Amodei, D.1
Anubhai, R.2
Battenberg, E.3
Case, C.4
Casper, J.5
Catanzaro, B.6
Chen, J.7
Chrzanowski, M.8
Coates, A.9
Diamos, G.10
Elsen, E.11
Engel, J.12
Fan, L.13
Fougner, C.14
Han, T.15
Hannun, A.16
Jun, B.17
LeGresley, P.18
Lin, L.19
Narang, S.20
Ng, A.21
Ozair, S.22
Prenger, R.23
Raiman, J.24
Satheesh, S.25
Seetapun, D.26
Sengupta, S.27
Wang, Y.28
Wang, Z.29
Wang, C.30
Xiao, B.31
Yogatama, D.32
Zhan, J.33
Zhu, Z.34
more..
-
5
-
-
84879976780
-
The arcade learning environment: An evaluation platform for general agents
-
June
-
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, June 2013.
-
(2013)
Journal of Artificial Intelligence Research
, vol.47
, pp. 253-279
-
-
Bellemare, M.G.1
Naddaf, Y.2
Veness, J.3
Bowling, M.4
-
6
-
-
84988352824
-
Theano: Deep learning on GPUs with python
-
J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron, et al. Theano: Deep learning on GPUs with python. In NIPS BigLearning Workshop, 2011.
-
(2011)
NIPS BigLearning Workshop
-
-
Bergstra, J.1
Bastien, F.2
Breuleux, O.3
Lamblin, P.4
Pascanu, R.5
Delalleau, O.6
Desjardins, G.7
Warde-Farley, D.8
Goodfellow, I.9
Bergeron, A.10
-
8
-
-
77955007393
-
A dynamically configurable coprocessor for convolutional neural networks
-
S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A dynamically configurable coprocessor for convolutional neural networks. In Proceedings of the 37th International Symposium on Computer Architecture, ISCA, 2010.
-
(2010)
Proceedings of the 37th International Symposium on Computer Architecture, ISCA
-
-
Chakradhar, S.1
Sankaradas, M.2
Jakkula, V.3
Cadambi, S.4
-
9
-
-
84873463816
-
BenchNN: On the broad potential application scope of hardware neural network accelerators
-
T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere, S. Qiu, M. Sebag, and O. Temam. BenchNN: On the broad potential application scope of hardware neural network accelerators. In International Symposium on Workload Characterization, IISWC, 2012.
-
(2012)
International Symposium on Workload Characterization, IISWC
-
-
Chen, T.1
Chen, Y.2
Duranton, M.3
Guo, Q.4
Hashmi, A.5
Lipasti, M.6
Nere, A.7
Qiu, S.8
Sebag, M.9
Temam, O.10
-
10
-
-
84897780584
-
DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
-
T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings of the Nineteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS, 2014.
-
(2014)
Proceedings of the Nineteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
-
-
Chen, T.1
Du, Z.2
Sun, N.3
Wang, J.4
Wu, C.5
Chen, Y.6
Temam, O.7
-
11
-
-
84988406311
-
DaDianNao: A machine-learning supercomputer
-
Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam. DaDianNao: A machine-learning supercomputer. In Proceedings of the 47th International Symposium on Microarchitecture, 2014.
-
(2014)
Proceedings of the 47th International Symposium on Microarchitecture
-
-
Chen, Y.1
Luo, T.2
Liu, S.3
Zhang, S.4
He, L.5
Wang, J.6
Li, L.7
Chen, T.8
Xu, Z.9
Sun, N.10
Temam, O.11
-
12
-
-
84962860246
-
Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
-
Y.-H. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. In International Solid-State Circuits Conference, ISSCC, 2016.
-
(2016)
International Solid-State Circuits Conference, ISSCC
-
-
Chen, Y.-H.1
Krishna, T.2
Emer, J.3
Sze, V.4
-
13
-
-
84944081816
-
-
arXiv:1410.0759
-
S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv, 1410.0759, 2014.
-
(2014)
CuDNN: Efficient Primitives for Deep Learning
-
-
Chetlur, S.1
Woolley, C.2
Vandermersch, P.3
Cohen, J.4
Tran, J.5
Catanzaro, B.6
Shelhamer, E.7
-
14
-
-
84988345727
-
PRIME: A novel processing-in-memory architecture for neural network computation in reram-based main memory
-
P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, T. Liu, Y. Wang, and Y. Xie. PRIME: A novel processing-in-memory architecture for neural network computation in reram-based main memory. In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA, 2016.
-
(2016)
Proceedings of the 43rd International Symposium on Computer Architecture, ISCA
-
-
Chi, P.1
Li, S.2
Xu, C.3
Zhang, T.4
Zhao, J.5
Liu, T.6
Wang, Y.7
Xie, Y.8
-
18
-
-
84994735497
-
Large-scale deep learning for intelligent computer systems
-
J. Dean. Large-scale deep learning for intelligent computer systems. BayLearn keynote speech, 2015.
-
(2015)
BayLearn Keynote Speech
-
-
Dean, J.1
-
19
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Advances in Neural Information Processing Systems, NIPS, 2012.
-
(2012)
Advances in Neural Information Processing Systems, NIPS
-
-
Dean, J.1
Corrado, G.S.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.Y.12
-
20
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR, 2009.
-
(2009)
Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
21
-
-
84959912559
-
ShiDianNao: Shifting vision processing closer to the sensor
-
Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam. ShiDianNao: Shifting vision processing closer to the sensor. In Proceedings of the 42nd International Symposium on Computer Architecture, ISCA, 2015.
-
(2015)
Proceedings of the 42nd International Symposium on Computer Architecture, ISCA
-
-
Du, Z.1
Fasthuber, R.2
Chen, T.3
Ienne, P.4
Li, L.5
Luo, T.6
Feng, X.7
Chen, Y.8
Temam, O.9
-
22
-
-
0003548585
-
-
LDC93S1
-
J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett. TIMIT acoustic-phonetic continuous speech corpus. LDC93S1, 1993.
-
(1993)
TIMIT Acoustic-phonetic Continuous Speech Corpus
-
-
Garofolo, J.S.1
Lamel, L.F.2
Fisher, W.M.3
Fiscus, J.G.4
Pallett, D.S.5
-
23
-
-
33749259827
-
Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
-
A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd international Conference on Machine learning, ICML, 2006.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning, ICML
-
-
Graves, A.1
Fernández, S.2
Gomez, F.3
Schmidhuber, J.4
-
24
-
-
84988443578
-
EIE: Efficient inference engine on compressed deep neural network
-
S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and W. Dally. EIE: Efficient inference engine on compressed deep neural network. In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA, 2016.
-
(2016)
Proceedings of the 43rd International Symposium on Computer Architecture, ISCA
-
-
Han, S.1
Liu, X.2
Mao, H.3
Pu, J.4
Pedram, A.5
Horowitz, M.6
Dally, W.7
-
25
-
-
84928545733
-
-
arXiv:1412.5567
-
A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng. Deep speech: Scaling up end-to-end speech recognition. arXiv, 1412.5567, 2015.
-
(2015)
Deep Speech: Scaling Up End-to-end Speech Recognition
-
-
Hannun, A.1
Case, C.2
Casper, J.3
Catanzaro, B.4
Diamos, G.5
Elsen, E.6
Prenger, R.7
Satheesh, S.8
Sengupta, S.9
Coates, A.10
Ng, A.Y.11
-
26
-
-
84960091813
-
DjiNN and tonic: DNN as a service and its implications for future warehouse scale computers
-
J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G. Dreslinski, J. Mars, and L. Tang. DjiNN and tonic: DNN as a service and its implications for future warehouse scale computers. In Proceedings of the 42nd International Symposium on Computer Architecture, ISCA, 2015.
-
(2015)
Proceedings of the 42nd International Symposium on Computer Architecture, ISCA
-
-
Hauswald, J.1
Kang, Y.2
Laurenzano, M.A.3
Chen, Q.4
Li, C.5
Mudge, T.6
Dreslinski, R.G.7
Mars, J.8
Tang, L.9
-
28
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
29
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the International Conference on Multimedia, 2014.
-
(2014)
Proceedings of the International Conference on Multimedia
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
35
-
-
84939194962
-
PuDianNao: A polyvalent machine learning accelerator
-
D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen. PuDianNao: A polyvalent machine learning accelerator. In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS, 2015.
-
(2015)
Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
-
-
Liu, D.1
Chen, T.2
Liu, S.3
Zhou, J.4
Zhou, S.5
Teman, O.6
Feng, X.7
Zhou, X.8
Chen, Y.9
-
36
-
-
84904867557
-
Playing atari with deep reinforcement learning
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learning Workshop, 2013.
-
(2013)
NIPS Deep Learning Workshop
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Graves, A.4
Antonoglou, I.5
Wierstra, D.6
Riedmiller, M.7
-
37
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
38
-
-
84946878588
-
-
K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung. Accelerating deep convolutional neural networks using specialized hardware. http://research.microsoft.com/apps/pubs/default.aspx?id=240715, 2015.
-
(2015)
Accelerating Deep Convolutional Neural Networks Using Specialized Hardware
-
-
Ovtcharov, K.1
Ruwase, O.2
Kim, J.-Y.3
Fowers, J.4
Strauss, K.5
Chung, E.S.6
-
39
-
-
84988349874
-
Minerva: Enabling lowpower, highly-accurate deep neural network accelerators
-
B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks. Minerva: Enabling lowpower, highly-accurate deep neural network accelerators. In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA, 2016.
-
(2016)
Proceedings of the 43rd International Symposium on Computer Architecture, ISCA
-
-
Reagen, B.1
Whatmough, P.2
Adolf, R.3
Rama, S.4
Lee, H.5
Lee, S.K.6
Hernández-Lobato, J.M.7
Wei, G.-Y.8
Brooks, D.9
-
40
-
-
84988345240
-
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars
-
A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan, M. Hu, R. S. Williams, and V. Srikumar. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA, 2016.
-
(2016)
Proceedings of the 43rd International Symposium on Computer Architecture, ISCA
-
-
Shafiee, A.1
Nag, A.2
Muralimanohar, N.3
Balasubramonian, R.4
Strachan, J.5
Hu, M.6
Williams, R.S.7
Srikumar, V.8
-
44
-
-
84946060630
-
CortexSuite: A synthetic brain benchmark suite
-
S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia, and M. B. Taylor. CortexSuite: A synthetic brain benchmark suite. In International Symposium on Workload Characterization, IISWC, 2014.
-
(2014)
International Symposium on Workload Characterization, IISWC
-
-
Thomas, S.1
Gohkale, C.2
Tanuwidjaja, E.3
Chong, T.4
Lau, D.5
Garcia, S.6
Taylor, M.B.7
-
47
-
-
84959896262
-
Neural acceleration for GPU throughput processors
-
A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Esmaeilzadeh. Neural acceleration for GPU throughput processors. In Proceedings of the 48th International Symposium on Microarchitecture, MICRO, 2015.
-
(2015)
Proceedings of the 48th International Symposium on Microarchitecture, MICRO
-
-
Yazdanbakhsh, A.1
Park, J.2
Sharma, H.3
Lotfi-Kamran, P.4
Esmaeilzadeh, H.5
-
49
-
-
84962921765
-
Optimizing FPGA-based accelerator design for deep convolutional neural networks
-
C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In 23rd International Symposium on Field-Programmable Gate Arrays, FPGA, 2015.
-
(2015)
23rd International Symposium on Field-Programmable Gate Arrays, FPGA
-
-
Zhang, C.1
Li, P.2
Sun, G.3
Guan, Y.4
Xiao, B.5
Cong, J.6
|